Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 83(23)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28939600

RESUMO

This study examined the inactivation of human norovirus (HuNoV) GI.1 and GII.4 by chlorine under conditions mimicking sewage treatment. Using a porcine gastric mucin-magnetic bead (PGM-MB) assay, no statistically significant loss in HuNoV binding (inactivation) was observed for secondary effluent treatments of ≤25 ppm total chlorine; for both strains, 50 and 100 ppm treatments resulted in ≤0.8-log10 unit and ≥3.9-log10 unit reductions, respectively. Treatments of 10, 25, 50, and 100 ppm chlorine inactivated 0.31, 1.35, >5, and >5 log10 units, respectively, of the norovirus indicator MS2 bacteriophage. Evaluation of treatment time indicated that the vast majority of MS2 and HuNoV inactivation occurred in the first 5 min for 0.2-µm-filtered, prechlorinated secondary effluent. Free chlorine measurements of secondary effluent seeded with MS2 and HuNoV demonstrated substantial oxidative burdens. With 25, 50, and 100 ppm treatments, free chlorine levels after 5 min of exposure ranged from 0.21 to 0.58 ppm, from 0.28 to 16.7 ppm, and from 11.6 to 53 ppm, respectively. At chlorine treatment levels of >50 ppm, statistically significant differences were observed between reductions for PGM-MB-bound HuNoV (potentially infectious) particles and those for unbound (noninfectious) HuNoV particles or total norovirus particles. While results suggested that MS2 and HuNoV (measured as PGM-MB binding) behave similarly, although not identically, both have limited susceptibility to chlorine treatments of ≤25 ppm total chlorine. Since sewage treatment is performed at ≤25 ppm total chlorine, targeting free chlorine levels of 0.5 to 1.0 ppm, these results suggest that traditional chlorine-based sewage treatment does not inactivate HuNoV efficiently.IMPORTANCE HuNoV is ubiquitous in sewage. A receptor binding assay was used to assess inactivation of HuNoV by chlorine-based sewage treatment, given that the virus cannot be routinely propagated in vitro Results reported here indicate that chlorine treatment of sewage is not effective for inactivating HuNoV unless chlorine levels are above those routinely used for sewage treatment.


Assuntos
Cloro/farmacologia , Desinfetantes/farmacologia , Levivirus/efeitos dos fármacos , Norovirus/efeitos dos fármacos , Esgotos/virologia , Eliminação de Resíduos Líquidos/métodos , Animais , Humanos , Levivirus/crescimento & desenvolvimento , Norovirus/crescimento & desenvolvimento , Esgotos/química , Suínos , Inativação de Vírus/efeitos dos fármacos
2.
Food Microbiol ; 63: 1-5, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28040155

RESUMO

Viruses are currently the leading cause of foodborne outbreaks, most of which are associated with foods consumed raw. Cold plasma (CP) is an emerging novel nonthermal technology that can be used to surface decontaminate foods. This study investigated CP technology for the nonthermal inactivation of human norovirus surrogates, Tulane virus (TV) and murine norovirus (MNV), on the surface of blueberries. Blueberries (5 g) were weighed into sterile 4 oz. glass jars and inoculated with TV, 5 log PFU/g. Samples were treated with atmospheric CP for 0, 15, 30, 45, and 60 s at a working distance of 7.5 cm with 4 cubic feet/minute (cfm) of CP jet. Temperature readings were taken with an infrared camera prior to, and immediately following, CP treatments. In order to establish the impact of air flow during CP treatment (4 cfm), an additional 7 cfm jet of room temperature air was introduced from a separate nozzle. The experiment was repeated with 90 and 120 s as additional treatment time points. Viral titers were measured immediately after each treatment with a plaque assay using LLC-MK2 cells (TV) or RAW 264.7 cells (MNV). TV was significantly reduced 1.5 PFU/g compared to the control after treatment time of 45s, which was achieved regardless of temperature conditions. With the addition of 7 cfm of ambient air, the maximum log reduction for TV was 3.5 log PFU/g after 120s of treatment. MNV was significantly reduced by 0.5 log PFU/g compare to the control at 15s, and further treatment of MNV with ambient air brought the log reduction to greater than 5 log PFU/g at 90 s of treatment (Fig. 3). These results demonstrate that CP viral inactivation does not rely on thermal inactivation, and is therefore nonthermal in nature. With further optimization, CP may be used by food processors as a means of nonthermal inactivation of foodborne viruses.


Assuntos
Mirtilos Azuis (Planta)/virologia , Caliciviridae/fisiologia , Norovirus/fisiologia , Gases em Plasma , Temperatura , Inativação de Vírus , Animais , Microbiologia de Alimentos , Inocuidade dos Alimentos/métodos , Humanos , Camundongos , Ensaio de Placa Viral
3.
Appl Environ Microbiol ; 82(19): 6037-45, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27474724

RESUMO

UNLABELLED: Human norovirus (HuNoV) is a leading cause of foodborne diseases worldwide. High-pressure processing (HPP) is one of the most promising nonthermal technologies for the decontamination of viral pathogens in foods. However, the survival of HuNoVs after HPP is poorly understood because these viruses cannot be propagated in vitro In this study, we estimated the survival of different HuNoV strains within genogroup II (GII) after HPP treatment using viral receptor-binding ability as an indicator. Four HuNoV strains (one GII genotype 1 [GII.1] strain, two GII.4 strains, and one GII.6 strain) were treated at high pressures ranging from 200 to 600 MPa. After treatment, the intact viral particles were captured by porcine gastric mucin-conjugated magnetic beads (PGM-MBs) that contained histo-blood group antigens, the functional receptors for HuNoVs. The genomic RNA copies of the captured HuNoVs were quantified by real-time reverse transcriptase PCR (RT-PCR). Two GII.4 HuNoVs had similar sensitivities to HPP. The resistance of HuNoV strains against HPP ranked as follows: GII.1 > GII.6 > GII.4, with GII.4 being the most sensitive. Evaluation of temperature and matrix effects on HPP-mediated inactivation of HuNoV GII.4, GII.1, and GII.6 strains showed that HuNoV was more easily inactivated at lower temperatures and at a neutral pH. In addition, phosphate-buffered saline (PBS) and minimal essential medium (MEM) can provide protective effects against HuNoV inactivation compared to H2O. Collectively, this study demonstrated that (i) different HuNoV strains within GII exhibited different sensitivities to high pressure, and (ii) HPP is capable of inactivating HuNoV GII strains by optimizing pressure parameters. IMPORTANCE: Human norovirus (HuNoV) is a leading cause of foodborne disease worldwide. Noroviruses are highly diverse, both antigenically and genetically. Genogroup II (GII) contains the majority of HuNoVs, with GII genotype 4 (GII.4) being the most prevalent. Recently, GII.1 and GII.6 have emerged and caused many outbreaks worldwide. However, the survival of these GII HuNoVs is poorly understood because they are uncultivable in vitro Using a novel receptor-binding assay conjugated with real-time RT-PCR, we found that GII HuNoVs had variable susceptibilities to high-pressure processing (HPP), which is one of the most promising food-processing technologies. The resistance of HuNoV strains to HPP ranked as follows: GII.1 > GII.6 > GII.4. This study highlights the ability of HPP to inactivate HuNoV and the need to optimize processing conditions based on HuNoV strain variability and sample matrix.


Assuntos
Proteínas do Capsídeo/genética , Manipulação de Alimentos , Genoma Viral , Norovirus/fisiologia , Animais , Mucinas Gástricas/química , Genótipo , Humanos , Separação Imunomagnética , Norovirus/genética , Reação em Cadeia da Polimerase em Tempo Real , Sus scrofa
4.
Appl Environ Microbiol ; 80(7): 2248-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24487534

RESUMO

Human norovirus (NoV) is the most frequent causative agent of food-borne disease associated with shellfish consumption. In this study, the effect of high hydrostatic pressure (HHP) on inactivation of NoV was determined. Genogroup I.1 (GI.1) or genogroup II.4 (GII.4) NoV was inoculated into oyster homogenates and treated at 300 to 600 MPa at 25, 6, and 1°C for 5 min. After HHP, samples were treated with RNase and viral particles were extracted with porcine gastric mucin (PGM)-conjugated magnetic beads (PGM-MBs). Viral RNA was then quantified by real-time reverse transcription (RT)-PCR. Since PGM contains histo-blood group-like antigens, which can act as receptors for NoV, deficiency for binding to PGM is an indication of loss of infectivity of NoV. After binding to PGM-MBs, RT-PCR-detectable NoV RNA in oysters was reduced by 0.4 to >4 log10 by HHP at 300 to 600 MPa. The GI.1 NoV was more resistant to HHP than the GII.4 NoV (P < 0.05). HHP at lower temperatures significantly enhanced the inactivation of NoV in oysters (P < 0.05). Pressure treatment was also conducted for clam homogenates. Treatment at 450 MPa at 1°C achieved a >4 log10 reduction of GI.1 NoV in both oyster and clam homogenates. It is therefore concluded that HHP could be applied as a potential intervention for inactivating NoV in raw shellfish. The method of pretreatment of samples with RNase, extraction of viral particles using PGM-MB binding, and quantification of viral RNA using RT-PCR can be explored as a practical means of distinguishing between infectious and noninfectious NoV.


Assuntos
Bivalves/virologia , Desinfecção/métodos , Microbiologia de Alimentos , Pressão Hidrostática , Norovirus/fisiologia , Ostreidae/virologia , Inativação de Vírus , Animais , Mucinas Gástricas/metabolismo , Norovirus/isolamento & purificação , RNA Viral/análise , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Suínos
5.
Virol J ; 11: 20, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24495489

RESUMO

BACKGROUND: Low-power ultrashort pulsed (USP) lasers operating at wavelengths of 425 nm and near infrared region have been shown to effectively inactivate viruses such as human immunodeficiency virus (HIV), M13 bacteriophage, and murine cytomegalovirus (MCMV). It was shown previously that non-enveloped, helical viruses such as M13 bacteriophage, were inactivated by a USP laser through an impulsive stimulated Raman scattering (ISRS) process. Recently, enveloped virus like MCMV has been shown to be inactivated by a USP laser via protein aggregation induced by an ISRS process. However, the inactivation mechanism for a clinically important class of viruses--non-enveloped, icosahedral viruses remains unknown. RESULTS AND DISCUSSIONS: We have ruled out the following four possible inactivation mechanisms for non-enveloped, icosahedral viruses, namely, (1) inactivation due to ultraviolet C (UVC) photons produced by non-linear optical process of the intense, fundamental laser beam at 425 nm; (2) inactivation caused by thermal heating generated by the direct laser absorption/heating of the virion; (3) inactivation resulting from a one-photon absorption process via chromophores such as porphyrin molecules, or indicator dyes, potentially producing reactive oxygen or other species; (4) inactivation by the USP lasers in which the extremely intense laser pulse produces shock wave-like vibrations upon impact with the viral particle. We present data which support that the inactivation mechanism for non-enveloped, icosahedral viruses is the impulsive stimulated Raman scattering process. Real-time PCR experiments show that, within the amplicon size of 273 bp tested, there is no damage on the genome of MNV-1 caused by the USP laser irradiation. CONCLUSION: We conclude that our model non-enveloped virus, MNV-1, is inactivated by the ISRS process. These studies provide fundamental knowledge on photon-virus interactions on femtosecond time scales. From the analysis of the transmission electron microscope (TEM) images of viral particles before and after USP laser irradiation, the locations of weak structural links on the capsid of MNV-1 were revealed. This important information will greatly aid our understanding of the structure of non-enveloped, icosahedral viruses. We envision that this non-invasive, efficient viral eradication method will find applications in the disinfection of pharmaceuticals, biologicals and blood products in the near future.


Assuntos
Lasers , Viabilidade Microbiana/efeitos da radiação , Norovirus/fisiologia , Norovirus/efeitos da radiação , Inativação de Vírus/efeitos da radiação , Análise Espectral Raman
6.
Emerg Infect Dis ; 19(3): 431-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23622517

RESUMO

Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. A previous study, which used a 3-dimensional (3-D) intestinal model derived from INT-407 cells reported NoV replication and extensive cytopathic effects (CPE). Using the same 3-D model, but with highly purified Norwalk virus (NV), we attempted to replicate this study. Our results showed no evidence of NV replication by real-time PCR of viral RNA or by immunocytochemical detection of viral structural and nonstructural proteins. Immunocytochemical analysis of the 3-D cultures also showed no detectable presence of histo-blood group antigens that participate in NV binding and host tropism. To determine the potential cause of CPE observed in the previous study, we exposed 3-D cultures to lipopolysaccharide concentrations consistent with contaminated stool samples and observed morphologic features similar to CPE. We conclude that the 3-D INT-407 model does not support NV replication.


Assuntos
Células Epiteliais/virologia , Gastroenterite/virologia , Mucosa Intestinal/virologia , Norovirus/fisiologia , Replicação Viral , Antígenos de Grupos Sanguíneos/metabolismo , Agregação Celular , Técnicas de Cultura de Células , Linhagem Celular , Células Epiteliais/imunologia , Gastroenterite/imunologia , Gastroenterite/patologia , Humanos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Lipopolissacarídeos/farmacologia , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/metabolismo , Tropismo Viral
7.
Appl Environ Microbiol ; 79(12): 3796-801, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584781

RESUMO

Consumption of raw oysters is an exposure route for human norovirus (NoV) and hepatitis A virus (HAV). Therefore, efficient postharvest oyster treatment technology is needed to reduce public health risks. This study evaluated the inactivation of HAV and the NoV research surrogate, murine norovirus-1 (MNV-1), in oysters (Crassostrea virginica) by electron beam (E-beam) irradiation. The reduction of potential infection risks was quantified for E-beam irradiation technology employed on raw oysters at various virus contamination levels. The E-beam dose required to reduce the MNV and HAV titer by 90% (D(10) value) in whole oysters was 4.05 (standard deviations [SD], ±0.63) and 4.83 (SD, ±0.08) kGy, respectively. Microbial risk assessment suggests that if a typical serving of 12 raw oysters was contaminated with 10(5) PFU, a 5-kGy treatment would achieve a 12% reduction (from 4.49 out of 10 persons to 3.95 out of 10 persons) in NoV infection and a 16% reduction (from 9.21 out of 10 persons to 7.76 out of 10 persons) in HAV infections. If the serving size contained only 10(2) PFU of viruses, a 5-kGy treatment would achieve a 26% reduction (2.74 out of 10 persons to 2.03 out of 10 persons) of NoV and 91% reduction (2.1 out of 10 persons to 1.93 out of 100 persons) of HAV infection risks. This study shows that although E-beam processing cannot completely eliminate the risk of viral illness, infection risks can be reduced.


Assuntos
Elétrons , Contaminação de Alimentos/prevenção & controle , Indústria de Processamento de Alimentos/métodos , Vírus da Hepatite A/efeitos da radiação , Norovirus/efeitos da radiação , Ostreidae/virologia , Animais , Relação Dose-Resposta à Radiação , Aceleradores de Partículas , Radiometria
8.
Appl Environ Microbiol ; 77(23): 8360-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21948840

RESUMO

The goal of this study was to determine how enteric viruses persist within shellfish tissues. Several lines of novel evidence show that phagocytic blood cells (hemocytes) of Eastern oysters (Crassostrea virginica) play an important role in the retention of virus particles. Our results demonstrated an association of virus contamination with hemocytes but not with hemolymph. Live oysters contaminated overnight with hepatitis A virus (HAV) and murine norovirus (MNV) had 56% and 80% of extractable virus associated with hemocytes, respectively. Transfer of HAV-contaminated hemocytes to naïve (virus-free) oysters resulted in naïve oyster meat testing HAV positive for up to 3 weeks. Acid tolerance of HAV, MNV, poliovirus (PV), and feline calicivirus (FCV) correlated with the ability of each virus to persist within oysters. Using reverse transcription-PCR (RT-PCR) to evaluate persistence of these viruses in oysters, we showed that HAV persisted the longest (>21 days) and was most acid resistant, MNV and PV were less tolerant of acidic pH, persisting for up to 12 days and 1 day, respectively, and FCV did not persist (<1 day) within oysters and was not acid tolerant. This suggests that the ability of a virus to tolerate the acidic conditions typical of phagolysosomal vesicles within hemocytes plays a role in determining virus persistence in shellfish. Evaluating oyster and hemocyte homogenates and live contaminated oysters as a prelude to developing improved viral RNA extraction methods, we found that viruses were extracted more expediently from hemocytes than from whole shellfish tissues and gave similar RT-PCR detection sensitivities.


Assuntos
Crassostrea/virologia , Hemócitos/virologia , Vírus/isolamento & purificação , Ácidos/farmacologia , Animais , Antivirais/farmacologia , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Fatores de Tempo
9.
Appl Environ Microbiol ; 77(15): 5476-82, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21705552

RESUMO

Contamination of oysters with human noroviruses (HuNoV) constitutes a human health risk and may lead to severe economic losses in the shellfish industry. There is a need to identify a technology that can inactivate HuNoV in oysters. In this study, we conducted a randomized, double-blinded clinical trial to assess the effect of high hydrostatic pressure processing (HPP) on Norwalk virus (HuNoV genogroup I.1) inactivation in virus-seeded oysters ingested by subjects. Forty-four healthy, positive-secretor adults were divided into three study phases. Subjects in each phase were randomized into control and intervention groups. Subjects received Norwalk virus (8FIIb, 1.0 × 10(4) genomic equivalent copies) in artificially seeded oysters with or without HPP treatment (400 MPa at 25°C, 600 MPa at 6°C, or 400 MPa at 6°C for 5 min). HPP at 600 MPa, but not 400 MPa (at 6° or 25°C), completely inactivated HuNoV in seeded oysters and resulted in no HuNoV infection among these subjects, as determined by reverse transcription-PCR detection of HuNoV RNA in subjects' stool or vomitus samples. Interestingly, a white blood cell (granulocyte) shift was identified in 92% of the infected subjects and was significantly associated with infection (P = 0.0014). In summary, these data suggest that HPP is effective at inactivating HuNoV in contaminated whole oysters and suggest a potential intervention to inactivate infectious HuNoV in oysters for the commercial shellfish industry.


Assuntos
Manipulação de Alimentos/métodos , Norovirus/isolamento & purificação , Norovirus/patogenicidade , Ostreidae/virologia , Frutos do Mar/virologia , Adolescente , Adulto , Animais , Método Duplo-Cego , Fezes/virologia , Feminino , Indústria Alimentícia , Microbiologia de Alimentos , Humanos , Pressão Hidrostática , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Via Transcriptase Reversa
10.
Food Environ Virol ; 13(2): 241-247, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689143

RESUMO

Seeking a means of sanitizing berries, the effectiveness of steady state levels of gaseous chlorine dioxide (ClO2) against hepatitis A virus (HAV) on laboratory-contaminated berries was determined. The generated ClO2 was maintained with 1 or 2 mg/l air inside a 269-l glove box to treat 50 g batches of blueberries, raspberries, and blackberries, and 100 g batches of strawberries that were immersion coated with HAV. Normalized data for ClO2 (ppm-h/g product) is reported as a function of ClO2 concentration, treatment time, and weight of treated product. Treatments of ClO2 ranging from 1.00 to 6.27 ppm-h/g berry were evaluated. When compared to untreated HAV-contaminated berries, log reductions of HAV were > 2.1 for all berry types and conditions tested indicating the gaseous ClO2 was effective. The average log reduction with strawberries, raspberries, blueberries and blackberries treated with 1.00 ppm-h/g, the lowest ClO2 treatment tested, were 2.44, 2.49, 3.23, and 3.45, respectively. The highest treatment of 6.27 ppm-h/g was applied at two different gas concentrations of 1 mg/l and 2 mg/l. Average log reductions for blueberries and strawberries treated with 6.27 ppm-h/g were 4.34 and 4.42, and 4.03 and 3.51, applied at 1 mg/l and 2 mg/l, respectively. For blackberries and raspberries 3.20 and 3.24, and 3.23 and 3.97 log reductions were observed for 6.27 ppm-h/g treatments applied at 1 mg/l and 2 mg/l, respectively. Results indicate that HAV contamination of berries can be substantially reduced by gaseous ClO2 and offer industry a waterless means of sanitizing berries against HAV.


Assuntos
Mirtilos Azuis (Planta)/virologia , Compostos Clorados/farmacologia , Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Fragaria/virologia , Vírus da Hepatite A/efeitos dos fármacos , Óxidos/farmacologia , Rubus/virologia , Compostos Clorados/química , Conservação de Alimentos/instrumentação , Conservantes de Alimentos/química , Frutas/virologia , Gases/química , Gases/farmacologia , Vírus da Hepatite A/crescimento & desenvolvimento , Óxidos/química
11.
Biol Cell ; 100(6): 377-86, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18208404

RESUMO

BACKGROUND INFORMATION: Protein-mediated merger of biological membranes, membrane fusion, is an important process. To investigate the role of fusogenic proteins in the initial size and dynamics of the fusion pore (a narrow aqueous pathway, which widens to finalize membrane fusion), two different fusion proteins expressed in the same cell line were investigated: the major glycoprotein of baculovirus Autographa californica (GP64) and the HA (haemagglutinin) of influenza X31. RESULTS: The host Sf9 cells expressing these viral proteins, irrespective of protein species, fused to human RBCs (red blood cells) upon acidification of the medium. A high-time-resolution electrophysiological study of fusion pore conductance revealed fundamental differences in (i) the initial pore conductance; pores created by HA were smaller than those created by GP64; (ii) the ability of pores to flicker; only HA-mediated pores flickered; and (iii) the time required for pore formation; HA-mediated pores took much longer to form after acidification. CONCLUSION: HA and GP64 have divergent electrophysiological phenotypes even when they fuse identical membranes, and fusion proteins play a crucial role in determining initial fusion pore characteristics. The structure of the initial fusion pore detected by electrical conductance measurements is sensitive to the nature of the fusion protein.


Assuntos
Membrana Celular/fisiologia , Glicoproteínas/fisiologia , Fusão de Membrana , Proteínas Virais/fisiologia , Animais , Linhagem Celular , Eletrofisiologia , Eritrócitos/fisiologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/fisiologia , Humanos , Cinética , Modelos Biológicos , Porinas/fisiologia , Proteínas Recombinantes de Fusão/fisiologia , Spodoptera
12.
Food Environ Virol ; 11(3): 214-219, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30949936

RESUMO

The effectiveness of steady-state levels of gaseous chlorine dioxide (ClO2) against Tulane virus (TV), a human norovirus surrogate, on berries was determined. The generated ClO2 was maintained at 1 mg/L inside a 269 L glove box to treat two 50 g batches of blueberries, raspberries, and blackberries, and two 100 g batches of strawberries that were immersion coated with TV. The standardized/normalized treatment concentrations of ClO2 ranging from 0.63 to 4.40 ppm-h/g berry were evaluated. When compared to untreated TV contaminated berries, log reductions of TV were in excess of 2.9 log PFU/g for all berry types and conditions tested, indicating that ClO2 was highly effective. In general, the efficacy of all ClO2 treatments on log reductions of TV on all berries was not significantly different (p < 0.05). The average log reduction with strawberries, raspberries, blueberries, and blackberries, treated with the lowest ClO2 concentration, 0.63 ppm-h/g, were 2.98, 3.40, 3.82, and 4.17 log PFU/g, respectively. Overall results suggest that constant levels of ClO2 could be quite effective against foodborne viruses.


Assuntos
Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Conservação de Alimentos/métodos , Frutas/virologia , Norovirus/efeitos dos fármacos , Óxidos/farmacologia , Mirtilos Azuis (Planta)/virologia , Compostos Clorados/química , Desinfetantes/química , Contaminação de Alimentos/prevenção & controle , Fragaria/virologia , Gases/química , Gases/farmacologia , Norovirus/crescimento & desenvolvimento , Norovirus/fisiologia , Óxidos/química , Rubus/virologia , Inativação de Vírus/efeitos dos fármacos
13.
Food Environ Virol ; 11(2): 120-125, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30919239

RESUMO

Male-specific coliphages (MSCs) are currently used to assess the virologic quality of shellfish-growing waters and to assess the impact of sewage release or adverse weather events on bivalve shellfish. Since MSC can have either DNA or RNA genomes, and most research has been performed exclusively on RNA MSCs, persistence of M13, a DNA MSC, was evaluated for its persistence as a function of time and temperature within Eastern oysters (Crassostrea virginica). Oysters were individually exposed to seawater containing a total of 1010 to 1012 pfu of M13 for 24 h at 15 °C followed by maintenance in tanks with as many as 21 oysters in continuously UV-sterilized water for up to 6 weeks at either 7, 15, or 22 °C. Two trials for each temperature were performed combining three shucked oysters per time point which were assayed by tenfold serial dilution in triplicate. Initial contamination levels averaged 106.9 and ranged from 106.0 to 107.0 of M13. For oysters held for 3 weeks, log10 reductions were 1.7, 3.8, and 4.2 log10 at 7, 15, and 22 °C, respectively. Oysters held at 7 and 15 °C for 6 weeks showed average reductions of 3.6 and 5.1 log10, respectively, but still retained infectious M13. In total, this work shows that DNA MSC may decline within shellfish in a manner analogous to RNA MSCs.


Assuntos
Colífagos/isolamento & purificação , Crassostrea/virologia , DNA Viral/genética , Frutos do Mar/virologia , Animais , Colífagos/classificação , Colífagos/genética , Masculino , Água do Mar/virologia , Esgotos/virologia , Especificidade da Espécie , Temperatura , Poluição da Água
14.
Artigo em Inglês | MEDLINE | ID: mdl-31331104

RESUMO

To assess the quality of shellfish harvest areas, bivalve mollusk samples from three coastal areas of the Campania region in Southwest Italy were evaluated for viruses over a three-year period (2015-2017). Screening of 289 samples from shellfish farms and other locations by qPCR and RT-qPCR identified hepatitis A virus (HAV; 8.9%), norovirus GI (NoVGI; 10.8%) and GII (NoVGII; 39.7%), rotavirus (RV; 9.0%), astrovirus (AsV; 20.8%), sapovirus (SaV; 18.8%), aichivirus-1 (AiV-1; 5.6%), and adenovirus (AdV, 5.6%). Hepatitis E virus (HEV) was never detected. Sequence analysis identified HAV as genotype IA and AdV as type 41. This study demonstrates the presence of different enteric viruses within bivalve mollusks, highlighting the limitations of the current EU classification system for shellfish growing waters.


Assuntos
Bivalves/virologia , Frutos do Mar/virologia , Vírus/isolamento & purificação , Animais , Monitoramento Ambiental , Contaminação de Alimentos/análise , Itália , Reação em Cadeia da Polimerase em Tempo Real , Vírus/genética
15.
Int J Food Microbiol ; 127(1-2): 1-5, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18547664

RESUMO

The objective of this study was to identify the high pressure processing conditions (pressure level, time, and temperature) needed to achieve a 5-log reduction of Vibrio parahaemolyticus in live oysters (Crassostrea virginica). Ten strains of V. parahaemolyticus were separately tested for their resistances to high pressure. The two most pressure-resistant strains were then used as a cocktail to represent baro-tolerant environmental strains. To evaluate the effect of temperature on pressure inactivation of V. parahaemolyticus, Vibrio-free oyster meats were inoculated with the cocktail of V. parahaemolyticus and incubated at room temperature (approximately 21 degrees C) for 24 h. Oyster meats were then blended and treated at 250 MPa for 5 min, 300 MPa for 2 min, and 350 MPa for 1 min. Pressure treatments were carried out at -2, 1, 5, 10, 20, 30, 40, and 45 degrees C. Temperatures > or = 30 degrees C enhanced pressure inactivation of V. parahaemolyticus. To achieve a 5-log reduction of V. parahaemolyticus in live oysters, pressure treatment needed to be > or = 350 MPa for 2 min at temperatures between 1 and 35 degrees C and > or = 300 MPa for 2 min at 40 degrees C.


Assuntos
Manipulação de Alimentos/métodos , Conservação de Alimentos/métodos , Pressão Hidrostática , Ostreidae/microbiologia , Frutos do Mar/microbiologia , Vibrio parahaemolyticus/crescimento & desenvolvimento , Animais , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , Contaminação de Alimentos/prevenção & controle , Humanos , Temperatura , Fatores de Tempo
16.
J Food Prot ; 71(8): 1598-603, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18724753

RESUMO

The individual effects of pH (pH 3 to 8), NaCl (0 to 21%), sucrose (0 to 70%), and whey protein (0 to 2%) on pressure resistance of feline calicivirus (FCV) in Dulbecco's modified Eagle medium with 10% fetal bovine serum were determined. At pH 3 through 8, the virus was more resistant to pressure at a pH of < or = 5.2. For FCV samples with sucrose (up to 40%) or NaCl (up to 12%), the amount of FCV inactivated by pressure was inversely proportional to the sucrose or NaCl concentration. For example, a treatment of 250 MPa at 20 degrees C for 5 min reduced the FCV titer by 5.1 log PFU/ml without added sucrose and by 0.9 log PFU/ml with 40% sucrose. Reduced pressure sensitivity with increasing NaCl and sucrose concentrations was not a simple function of water activity. Different PFU reductions were observed for NaCl and sucrose samples with equivalent water activity. When protein at concentrations up to 2% did not provide a protective effect. The combined effect of NaCl and sucrose at 4 and 20 degrees C on pressure resistance of FCV also was examined. When both NaCl and sucrose were added to the FCV stock, they had an additive effect on increasing the pressure resistance of FCV. The individual (6% NaCl or 20% sucrose) and combined (6% NaCl plus 20% sucrose) resistance effects did not abrogate enhanced inactivation for pressure treatments at 4 degrees C compared with those at 20 degrees C. Aqueous matrix compositions, in particular different concentrations of NaCl and sucrose or different pH values, can substantially alter the efficiency of virus inactivation by high pressure processing.


Assuntos
Calicivirus Felino/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Pressão Hidrostática , Inativação de Vírus , Animais , Qualidade de Produtos para o Consumidor , Humanos , Proteínas do Leite/farmacologia , Modelos Biológicos , Cloreto de Sódio/farmacologia , Sacarose/farmacologia , Temperatura , Fatores de Tempo , Proteínas do Soro do Leite
17.
Food Environ Virol ; 10(1): 83-88, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28831665

RESUMO

Male-specific bacteriophages have been proposed as human enteric virus indicators for shellfish. In this study, Eastern oysters (Crassostrea virginica) were individually exposed to 5.6 × 1010 PFU of MS-2 for 48 h at 15 °C followed by collective maintenance in continuously UV-sterilized seawater for 0-6 weeks at either 7, 15, or 24 °C. Initial contamination levels of MS-2 were >6 log PFU. Assessment of weekly declines of viable MS-2 indicated that cooler temperatures dramatically enhanced the persistence of MS-2 within oyster tissues. At 3 weeks, the average log PFU reductions for MS-2 within oysters were 2.28, 2.90, and 4.57 for oysters held at 7, 15, and 24 °C, respectively. Fitting temporal survival data with linear and nonlinear Weibull models indicated that the Weibull model best fit the observed reductions. In total, these data can serve as a guideline for regulatory agencies regarding the influence of water temperature on indicator phage after episodic sewage exposure.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Crassostrea/virologia , Água do Mar/virologia , Esgotos/virologia , Frutos do Mar/virologia , Temperatura , Poluição da Água , Animais , Monitoramento Ambiental , Humanos , Modelos Biológicos
18.
Int J Food Microbiol ; 273: 28-32, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29558681

RESUMO

To determine the effectiveness of gaseous chlorine dioxide (gClO2) against a human norovirus surrogate on produce, gClO2 was generated and applied to Tulane virus-coated blueberries in a 240 ml-treatment chamber. gClO2 was produced by an acidifying sodium chlorite solution. Initial assessments indicated that blueberries treated with gClO2 generated from ≤1 mg acidified sodium chlorite in the small chamber appeared unaffected while gClO2 generated from ≥10 mg of acidified sodium chlorite solution altered the appearance and quality of the blueberries. Treatments of inoculated blueberries with gClO2 generated from 0.1 mg sodium chlorite reduced the virus populations by >1 log after exposure for 30 to 330 min. For the 1 mg sodium chlorite treatments, the virus populations were reduced by >2.2 log after 15 min exposure and to non-detectable levels (>3.3 logs reductions) after 180 min exposure. Measured concentrations of gClO2 peaked in the treatment chamber at 0.9 µg/l after 10 min for 0.1 mg treatments and 600 µg/l after around 20 min for 1 mg treatment. Overall results indicate that gClO2 could be a feasible waterless intervention for blueberries and other produce.


Assuntos
Mirtilos Azuis (Planta)/virologia , Compostos Clorados/farmacologia , Desinfetantes/farmacologia , Frutas/microbiologia , Norovirus/efeitos dos fármacos , Óxidos/farmacologia , Cloretos/química , Contagem de Colônia Microbiana , Humanos , Norovirus/fisiologia
19.
J Food Prot ; 81(2): 279-283, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29360400

RESUMO

Combination treatments of surfactants and phenolic or short-chain organic acids (SCOA) may act synergistically or additively as sanitizers to inactive foodborne viruses and prevent outbreaks. The purpose of this study was to investigate the effect of gallic acid (GA), tannic acid, p-coumaric acid, lactic acid (LA), or acetic acid (AA), in combination with sodium dodecyl sulfate (SDS), against Tulane virus (TV), a surrogate for human norovirus. An aqueous stock solution of phenolic acids or SCOA with or without SDS was prepared and diluted in a twofold dilution series to 2× the desired concentration with cell growth media (M119 plus 10% fetal bovine serum). The solution was inoculated with an equal proportion of 6 log PFU/mL TV with a treatment time of 5 min. The survival of TV was quantified using a plaque assay with LLC-MK2 cells. The minimum virucidal concentration was 0.5:0.7% (v/v) for LA-SDS at pH 3.5 (4.5-PFU/mL reduction) and 0.5:0.7% (v/v) AA-SDS at pH 4.0 (2.6-log PFU/mL reduction). GA and SDS demonstrated a minimum virucidal concentration of 12.5 mM GA-SDS at pH 7.0 (0.2:0.3% GA-SDS) with an 0.8-log PFU/mL reduction and 50 mM GA-SDS (0.8:1.4% GA-SDS at pH 7.0) increased log reduction to 1.6 log PFU/mL. The combination treatments of AA or LA with SDS at pH 7.0 did not produce significant log reduction, nor did individual treatments of tannic acid, GA, p-coumaric acid, AA, LA, or SDS. This study demonstrates that a surfactant, such as SDS, aids in the phenolic acid and SCOA toxicities against viruses. However, inactivation of TV by combination treatments is contingent upon the pH of the sanitizing solution being lower than the pKa value of the organic acid being used. This information can be used to develop sanitizing washes to disinfect food contact surfaces, thereby aiding in the prevention of foodborne outbreaks.


Assuntos
Norovirus/efeitos dos fármacos , Tensoativos/farmacologia , Norovirus/crescimento & desenvolvimento , Norovirus/metabolismo , Inativação de Vírus/efeitos dos fármacos
20.
J Virol Methods ; 141(1): 58-62, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17184849

RESUMO

The GPTT virus RNA extraction method, originally developed for extraction of human norovirus and hepatitis A virus RNAs from contaminated shellfish, was evaluated for extraction of RNA from Aichi virus strain A846/88 (AiV), coxsackievirus strains A9 (CAV9) and B5 (CBV5), murine norovirus (strain MNV-1), and the norovirus surrogate, feline calicivirus (FCV) strain KCD, for the purpose of RT-PCR detection within seeded oyster (Crassostrea virginica) extracts. The RT-PCR equivalent sensitivities observed within seeded oysters as compared to virus stocks were 0.68, 6.8, 26, 5.6, and 14.5 RT-PCR(50) units when assaying 10% of total RNA extracted from seeded oyster extracts for CAV9, CBV5, AiV, FCV, and MNV-1, respectively. For oysters exposed to virus-contaminated seawater, the detection equivalent sensitivities observed were 680, 68, 2600, 560, and 14.5 RT-PCR(50) for CAV9, CBV5, AiV and FCV, and MNV-1, respectively. These results indicate that the GPTT method can be used as a general viral RNA extraction method for multiple picornaviruses and caliciviruses that could potentially contaminate shellfish.


Assuntos
Caliciviridae/isolamento & purificação , Enterovirus/isolamento & purificação , Kobuvirus/isolamento & purificação , Ostreidae/virologia , RNA Viral/isolamento & purificação , Frutos do Mar/virologia , Animais , Caliciviridae/genética , Gatos/virologia , Enterovirus/genética , Estudos de Avaliação como Assunto , Kobuvirus/genética , Norovirus/genética , Norovirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA