Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell ; 175(3): 736-750.e30, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30270041

RESUMO

How the topography of neural circuits relates to their function remains unclear. Although topographic maps exist for sensory and motor variables, they are rarely observed for cognitive variables. Using calcium imaging during virtual navigation, we investigated the relationship between the anatomical organization and functional properties of grid cells, which represent a cognitive code for location during navigation. We found a substantial degree of grid cell micro-organization in mouse medial entorhinal cortex: grid cells and modules all clustered anatomically. Within a module, the layout of grid cells was a noisy two-dimensional lattice in which the anatomical distribution of grid cells largely matched their spatial tuning phases. This micro-arrangement of phases demonstrates the existence of a topographical map encoding a cognitive variable in rodents. It contributes to a foundation for evaluating circuit models of the grid cell network and is consistent with continuous attractor models as the mechanism of grid formation.


Assuntos
Córtex Entorrinal/citologia , Células de Grade/citologia , Animais , Córtex Entorrinal/fisiologia , Células de Grade/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa
2.
Nature ; 495(7440): 199-204, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23395984

RESUMO

During navigation, grid cells increase their spike rates in firing fields arranged on a markedly regular triangular lattice, whereas their spike timing is often modulated by theta oscillations. Oscillatory interference models of grid cells predict theta amplitude modulations of membrane potential during firing field traversals, whereas competing attractor network models predict slow depolarizing ramps. Here, using in vivo whole-cell recordings, we tested these models by directly measuring grid cell intracellular potentials in mice running along linear tracks in virtual reality. Grid cells had large and reproducible ramps of membrane potential depolarization that were the characteristic signature tightly correlated with firing fields. Grid cells also demonstrated intracellular theta oscillations that influenced their spike timing. However, the properties of theta amplitude modulations were not consistent with the view that they determine firing field locations. Our results support cellular and network mechanisms in which grid fields are produced by slow ramps, as in attractor models, whereas theta oscillations control spike timing.


Assuntos
Córtex Entorrinal/citologia , Potenciais da Membrana/fisiologia , Potenciais de Ação/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Técnicas de Patch-Clamp , Percepção Espacial , Ritmo Teta
3.
Elife ; 92020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32149601

RESUMO

During spatial navigation, animals use self-motion to estimate positions through path integration. However, estimation errors accumulate over time and it is unclear how they are corrected. Here we report a new cell class ('cue cell') encoding visual cues that could be used to correct errors in path integration in mouse medial entorhinal cortex (MEC). During virtual navigation, individual cue cells exhibited firing fields only near visual cues and their population response formed sequences repeated at each cue. These cells consistently responded to cues across multiple environments. On a track with cues on left and right sides, most cue cells only responded to cues on one side. During navigation in a real arena, they showed spatially stable activity and accounted for 32% of unidentified, spatially stable MEC cells. These cue cell properties demonstrate that the MEC contains a code representing spatial landmarks, which could be important for error correction during path integration.


Assuntos
Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Neurônios/fisiologia , Navegação Espacial , Realidade Virtual , Potenciais de Ação , Animais , Sinais (Psicologia) , Masculino , Camundongos , Visão Ocular
4.
J Neural Eng ; 16(3): 036005, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30754031

RESUMO

OBJECTIVE: Recovery of voluntary gait after spinal cord injury (SCI) requires the restoration of effective motor cortical commands, either by means of a mechanical connection to the limbs, or by restored functional connections to muscles. The latter approach might use functional electrical stimulation (FES), driven by cortical activity, to restore voluntary movements. Moreover, there is evidence that this peripheral stimulation, synchronized with patients' voluntary effort, can strengthen descending projections and recovery. As a step towards establishing such a cortically-controlled FES system for restoring function after SCI, we evaluate here the type and quantity of neural information needed to drive such a brain machine interface (BMI) in rats. We compared the accuracy of the predictions of hindlimb electromyograms (EMG) and kinematics using neural data from an intracortical array and a less-invasive epidural array. APPROACH: Seven rats were trained to walk on a treadmill with a stable pattern. One group of rats (n = 4) was implanted with intracortical arrays spanning the hindlimb sensorimotor cortex and EMG electrodes in the contralateral hindlimb. Another group (n = 3) was implanted with epidural arrays implanted on the dura overlying hindlimb sensorimotor cortex. EMG, kinematics and neural data were simultaneously recorded during locomotion. EMGs and kinematics were decoded using linear and nonlinear methods from multiunit activity and field potentials. MAIN RESULTS: Predictions of both kinematics and EMGs were effective when using either multiunit spiking or local field potentials (LFPs) recorded from intracortical arrays. Surprisingly, the signals from epidural arrays were essentially uninformative. Results from somatosensory evoked potentials (SSEPs) confirmed that these arrays recorded neural activity, corroborating our finding that this type of array is unlikely to provide useful information to guide an FES-BMI for rat walking. SIGNIFICANCE: We believe that the accuracy of our decoders in predicting EMGs from multiunit spiking activity is sufficient to drive an FES-BMI. Our future goal is to use this rat model to evaluate the potential for cortically-controlled FES to be used to restore locomotion after SCI, as well as its further potential as a rehabilitative technology for improving general motor function.


Assuntos
Interfaces Cérebro-Computador , Espaço Epidural/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia , Locomoção/fisiologia , Neurônios/fisiologia , Córtex Somatossensorial/fisiologia , Potenciais de Ação/fisiologia , Animais , Eletromiografia/métodos , Feminino , Previsões , Ratos , Ratos Sprague-Dawley
5.
Neuron ; 89(5): 1086-99, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26898777

RESUMO

Grid cells, defined by their striking periodic spatial responses in open 2D arenas, appear to respond differently on 1D tracks: the multiple response fields are not periodically arranged, peak amplitudes vary across fields, and the mean spacing between fields is larger than in 2D environments. We ask whether such 1D responses are consistent with the system's 2D dynamics. Combining analytical and numerical methods, we show that the 1D responses of grid cells with stable 1D fields are consistent with a linear slice through a 2D triangular lattice. Further, the 1D responses of comodular cells are well described by parallel slices, and the offsets in the starting points of the 1D slices can predict the measured 2D relative spatial phase between the cells. From these results, we conclude that the 2D dynamics of these cells is preserved in 1D, suggesting a common computation during both types of navigation behavior.


Assuntos
Potenciais da Membrana/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Percepção Espacial/fisiologia , Animais , Análise de Fourier , Humanos , Matemática , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA