Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(46): 21056-21067, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36347032

RESUMO

Yb(III) complexes of macrocyclic ligands based on 1,4,7,10-tetraazacyclododecane were synthesized. The ligands carried a carbostyril chromophore for Yb(III) sensitization, and carboxylate or carbamide donors for metal binding, forming complexes of 0, +1, +2, or +3 overall charge. The coordination geometry was little affected by the replacement of carboxylates with amides, as shown by paramagnetic 1H NMR spectroscopy. The Yb(III)/Yb(II) reduction potentials were dependent on the nature of the metal binding site, and the more positively charged complexes were easier to reduce. Carbostyril excitation resulted in Yb(III) luminescence in every complex. The residual carbostyril fluorescence quantum yields were smaller in complexes containing more reducible Yb(III) centers decreasing from 5.9% for uncharged complexes to 3.1-4.4% in +3 charged species, suggesting photoinduced electron transfer (PeT) from the antenna to the Yb(III). The relative Yb(III) luminescence quantum yields were identical within the experimental error, except for the +3 charged complex with fully methylated coordinating amides, which was the most intense Yb(III) emitter of the series in water. Quenching of the Yb(III) excited state by NH vibrations proved to limit Yb(III) emission. No clear improvement of the Yb(III) sensitization efficiency was shown upon faster PeT. This result can be explained by the concomitant sensitization of Yb(III) by phonon-assisted energy transfer (PAEnT) from the antenna triplet excited state, which was completely quenched in all of the Yb complexes. Depopulation of the triplet by PeT quenching of the donor singlet excited state would be compensated by the sensitizing nature of the PeT pathway, thus resulting in a constant overall sensitization efficiency across the series.


Assuntos
Ácidos Carboxílicos , Luminescência , Ligantes , Transferência de Energia , Amidas
2.
J Am Chem Soc ; 142(30): 13190-13200, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32623881

RESUMO

The quenching of sensitized Eu(III) luminescence by photoinduced electron transfer from the excited light-harvesting antenna to Eu(III) was investigated. A series of complexes incorporating different metal binding sites and thus having varying Eu(III)/Eu(II) reduction potentials were prepared. The complexes were fully characterized using a combination of single-crystal X-ray crystallography and paramagnetic 1H NMR spectroscopy, the results of which support the structural similarity of the complexes. The redox and photophysical behavior of the Eu(III) center and the light-harvesting antenna were studied using cyclic voltammetry and steady-state and time-resolved emission spectroscopy on the nanosecond and millisecond time scales. The contribution of photoinduced electron transfer to the overall reduction of the Eu(III) luminescence quantum yield was found to be comparable and, in many cases, larger than the quenching caused by well-established processes such as coupling to X-H oscillators. These results suggest that the elimination or mitigation of photoinduced electron transfer could substantially improve the emissive properties of the widely used Eu(III)-based emitters.

3.
Inorg Chem ; 59(1): 106-117, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31613593

RESUMO

Azide- and alkyne-functionalized bioconjugable luminescent lanthanide complexes are reported. Reactive handles were introduced into the complexes by the late-stage modification of a methylenecarboxylic acid antenna pendent group. Tb and Eu quantum yields (11-13% and 3.4-3.6%, respectively) were not greatly affected by the presence of the azide or the alkyne compared to the parent complex (ΦTb = 10%, ΦEu = 2.8%). Two avenues were explored for improving the luminescence of the lanthanide (Ln) complexes: (1) attaching the antenna through a tertiary amide linker and (2) replacing a monodentate carboxylate ligand with a bidentate pyridylcarboxylate donor, which yielded a nonadentate ligand that could saturate the lanthanide coordination sphere and eliminate the quenching metal-bound water molecule that was present in the octadentate complexes. The combination of both approaches yielded Eu and Tb emitters with 5.8% and 46% quantum yields. For the Eu complex, this value was the same as ΦEu in the octadentate parent complex. We attribute this to increased photoinduced electron transfer quenching in the nonadentate species, which compensates for the reduced O-H quenching.

4.
Molecules ; 25(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198318

RESUMO

The coordination compounds of the trivalent lanthanide ions (Ln(III)) have unique photophysical properties. Ln(III) excitation is usually performed through a light-harvesting antenna. To enable Ln(III)-based emitters to reach their full potential, an understanding of how complex structure affects sensitization and quenching processes is necessary. Here, the role of the linker between the antenna and the metal binding fragment was studied. Four macrocyclic ligands carrying coumarin 2 or 4-methoxymethylcarbostyril sensitizing antennae linked to an octadentate macrocyclic ligand binding site were synthesized. Complexation with Ln(III) (Ln = La, Sm, Eu, Gd, Tb, Yb and Lu) yielded species with overall -1, 0, or +2 and +3-charge. Paramagnetic 1H NMR spectroscopy indicated subtle differences between the coumarin- and carbostyril-carrying Eu(III) and Yb(III) complexes. Cyclic voltammetry showed that the effect of the linker on the Eu(III)/Eu(II) apparent reduction potential was dependent on the electronic properties of the N-substituent. The Eu(III), Tb(III) and Sm(III) complexes were all luminescent. Coumarin-sensitized complexes were poorly emissive; photoinduced electron transfer was not a major quenching pathway in these species. These results show that seemingly similar emitters can undergo very different photophysical processes, and highlight the crucial role the linker can play.


Assuntos
Acetatos/química , Amidas/química , Elementos da Série dos Lantanídeos/química , Sítios de Ligação , Cumarínicos/química , Hidroxiquinolinas/química , Ligantes , Luminescência , Espectroscopia de Ressonância Magnética , Metais/química , Modelos Moleculares , Estrutura Molecular , Quinolonas/química , Espectrofotometria Ultravioleta , Temperatura
5.
Dalton Trans ; 51(43): 16596-16604, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36263855

RESUMO

Yb(III) complexes based on ligands with a 1,4,7-triazacyclononane (tacn) macrocyclic core were synthesised. The complexes carry a 4-methoxymethyl-substituted carbostyril chromophore that serves as a light-harvesting antenna. The ligands supply 5 nitrogen and 3 oxygen donors via 1 methylenecarboxamide and 2 picolinate donors, creating +1 charged complexes with an octadentate binding environment. The electronic properties of the picolinates are modulated by varying the substitution at the 4 position with OMe, H, Cl, or CF3. Cyclic voltammetry indicated that the tacn-based Yb(III) complexes were easier to reduce than the analogous cyclen complexes. The first reductive event is likely picolinate-centred, followed by the formation of further reduced species. Antenna excitation yielded Yb(III) luminescence in the near-infrared (NIR) region in all cases. The antenna photophysical properties were consistent with intraligand photoinduced electron transfer from the excited carbostyril to the picolinate groups. The relative quantum yields of Yb(III) luminescence were determined. The lowest value was obtained for the complex with the most efficient antenna-to-picolinate photoinduced electron transfer. Despite intraligand electron transfer quenching of the antenna, the tacn-based Yb complexes were more emissive than their cyclen analogues, highlighting the influence of the ligand structure on the luminescence properties of NIR emissive lanthanide(III) ions.


Assuntos
Ciclamos , Elementos da Série dos Lantanídeos , Ligantes , Elementos da Série dos Lantanídeos/química , Íons
6.
Dalton Trans ; 50(12): 4244-4254, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33688904

RESUMO

A series of luminescent lanthanide(iii) complexes consisting of 1,4,7-triazacyclononane frameworks and three secondary amide-linked carbostyril antennae were synthesised. The metal binding sites were augmented with two pyridylcarboxylate donors yielding octadentate ligands. The antennae carried methyl, methoxymethyl or trifluoromethyl substituents in their 4-positions, allowing for a range of excited state energies and antenna electronic properties. The 1H NMR spectra of the Eu(iii) complexes were found to be analogous to each other. Similar results were obtained in the solid-state by single-crystal X-ray crystallography, which showed the structures to have nine-coordinate metal ions with heavily distorted tricapped trigonal prismatic geometries. Steady-state and time-resolved luminescence spectroscopy showed that the antennae could sensitize both Tb(iii) and Eu(iii), however, quantum yields were lower than in other octadentate complexes lacking pyridylcarboxylate. Complexes with more electron-poor pyridines were less emissive even when equipped with the same antenna. The oxidation and reduction potentials of the antennae and the pyridinecarboxylates, respectively, were determined by cyclic voltammetry. The obtained values were consistent with electron transfer from the excited antenna to the pyridine providing a previously unexplored quenching pathway that could efficiently compete with energy transfer to the lanthanide. These results show the crucial impact that photophysically innocent ligand binding sites can have on lanthanide luminescence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA