Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cell Mol Med ; 24(10): 5665-5674, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32283567

RESUMO

In patients with osteomalacia, a defect in bone mineralization leads to changed characteristics of the bone surface. Considering that the properties of the surrounding matrix influence function and differentiation of cells, we aimed to investigate the effect of osteoidosis on differentiation and function of osteoclasts. Based on osteomalacic bone biopsies, a model for osteoidosis in vitro (OIV) was established. Peripheral blood mononuclear cells were differentiated to osteoclasts on mineralized surfaces (MS) as internal control and on OIV. We observed a significantly reduced number of osteoclasts and surface resorption on OIV. Atomic force microscopy revealed a significant effect of the altered degree of mineralization on surface mechanics and an unmasking of collagen fibres on the surface. Indeed, coating of MS with RGD peptides mimicked the resorption phenotype observed in OIV, suggesting that the altered differentiation of osteoclasts on OIV might be associated with an interaction of the cells with amino acid sequences of unmasked extracellular matrix proteins containing RGD sequences. Transcriptome analysis uncovered a strong significant up-regulation of transmembrane glycoprotein TROP2 in osteoclastic cultures on OIV. TROP2 expression on OIV was also confirmed on the protein level and found on the bone surface of patients with osteomalacia. Taken together, our results show a direct influence of the mineralization state of the extracellular matrix surface on differentiation and function of osteoclasts on this surface which may be important for the pathophysiology of osteomalacia and other bone disorders with changed ratio of osteoid to bone.


Assuntos
Diferenciação Celular , Osteoclastos/citologia , Osteoclastos/metabolismo , Osteomalacia/etiologia , Osteomalacia/metabolismo , Biópsia , Osso e Ossos/metabolismo , Osso e Ossos/patologia , Calcificação Fisiológica , Contagem de Células , Diferenciação Celular/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Microscopia de Força Atômica , Osteoblastos/metabolismo , Osteomalacia/patologia , Estudos Retrospectivos , Transcriptoma
2.
J Plast Reconstr Aesthet Surg ; 73(9): 1738-1746, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32418841

RESUMO

INTRODUCTION: Diabetes mellitus remains a significant public health problem, consuming over $400 billion every year. While Diabetes itself can be controlled effectively, impaired wound healing still occurs frequently in diabetic patients. Adipose-derived mesenchymal stem cells (ASCs) provide an especially appealing source for diabetic wound cell therapy. With autologous approaches, the functionality of ASCs largely underlie patient-dependent factors. Diabetes is a significant diminishing factor of MSC functionality. Here, we explore a novel strategy to enhance diabetic ASC functionality through deferoxamine (DFO) preconditioning. MATERIAL AND METHODS: Human diabetic ASCs have been preconditioned with 150 µM and 300 µM DFO in vitro and analyzed for regenerative cytokine expression. Murine diabetic ASCs have been preconditioned with 150 µM DFO examined for their in vitro and in vivo vasculogenic capacity in Matrigel assays. Additionally, a diabetic murine wound healing model has been performed to assess the regenerative capacity of preconditioned cells. RESULTS: DFO preconditioning enhances the VEGF expression of human diabetic ASCs through hypoxia-inducible factor upregulation. The use of 150 µM of DFO was an optimal concentration to induce regenerative effects. The vasculogenic potential of preconditioned diabetic ASCs is significantly greater in vitro and in vivo. The enhanced regenerative functionality of DFO preconditioned ASCs was further confirmed in a model of diabetic murine wound healing. CONCLUSION: These results demonstrate that DFO significantly induced the upregulation of hypoxia-inducible factor-1 alpha and VEGF in diabetic ASCs and showed efficacy in the treatment of diabetes-associated deficits of wound healing. The favorable status of DFO as a small molecule drug approved since decades for multiple indications makes this approach highly translatable.


Assuntos
Desferroxamina/farmacologia , Diabetes Mellitus Experimental/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regeneração/efeitos dos fármacos , Adulto , Idoso , Animais , Células Cultivadas , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Pessoa de Meia-Idade , Neovascularização Fisiológica/efeitos dos fármacos , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos
3.
Plast Reconstr Surg ; 144(3): 623-632, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31461015

RESUMO

BACKGROUND: Lipedema is characterized by localized accumulation of fat in the extremities, which is typically unresponsive to dietary regimens or physical activity. Although the disease is well described and has a high incidence, little is known regarding the molecular and cellular mechanisms underlying its pathogenesis. The aim of this study was to investigate the pathophysiology of lipedema adipose cells in vitro. METHODS: Adipose-derived stem cells were isolated from lipoaspirates derived from lipedema and nonlipedema patients undergoing tumescent liposuction. In vitro differentiation studies were performed for up to 14 days using adipogenic or regular culture medium. Supernatants and cell lysates were tested for adiponectin, leptin, insulin-like growth factor-1, aromatase (CYP19A1), and interleukin-8 content at days 7 and 14, using enzyme-linked immunosorbent assays. Adipogenesis was evaluated by visualizing and measuring cytoplasmic lipid accumulation. RESULTS: Lipedema adipose-derived stem cells showed impeded adipogenesis already at early stages of in vitro differentiation. Concomitant with a strongly reduced cytoplasmic lipid accumulation, significantly lower amounts of adiponectin and leptin were detectable in supernatants from lipedema adipose-derived stem cells and adipocytes compared with control cells. In addition, lipedema and nonlipedema cells differed in their expression of insulin-like growth factor-1, aromatase (CYP19A1), and interleukin-8 and in their proliferative activity. CONCLUSIONS: The authors' findings indicate that in vitro adipogenesis of lipedema adipose-derived stem cells is severely hampered compared with nonlipedema adipose-derived stem cells. Lipedema adipose cells differ not only in their lipid storage capacity but also in their adipokine expression pattern. This might serve as a valuable marker for diagnosis of lipedema, probably from an early stage on.


Assuntos
Adipócitos/metabolismo , Adipogenia/fisiologia , Tecido Adiposo/citologia , Lipedema/patologia , Células-Tronco/citologia , Adiponectina/metabolismo , Tecido Adiposo/metabolismo , Adulto , Aromatase/metabolismo , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Feminino , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Células-Tronco/metabolismo
4.
Eur J Med Res ; 23(1): 60, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30585140

RESUMO

BACKGROUND: Fingertip injuries treated with occlusive dressings (ODs) lead to nearly scar-free, functionally, and aesthetically pleasing results. We hypothesized that paracrine factors in the wound fluid (secretome) may influence migration and proliferation of mesenchymal stem cells (MSCs) and fibroblasts and modulate the wound-healing process. METHODS: We could collect wound fluid samples from 4 fingertip injuries and 7 split skin donor sites at the 5th day during dressing change. Blood serum samples served as controls. The proliferation rate of MSCs and fibroblasts (HS27) was continuously measured through impedance analysis for 60 h and by Alamarblue analysis after 72 h. Cell migration was evaluated continuously for 15 h and confirmed by the in vitro wound-healing assay. RESULTS: Migration of MSCs under the influence of both wound fluids was significantly faster than controls from 4 to 6 h after incubation and reversed after 9 h. MSC proliferation in wound fluid groups showed a significant increase at 5 and 10 h and was significantly decreased after 45 h. Fibroblasts in wound fluid groups showed overall a significant increase in migration and a significant decrease in proliferation compared to controls. CONCLUSION: OD-induced secretomes influence MSCs and fibroblasts and thereby possibly modulate wound healing and scar tissue formation.


Assuntos
Líquidos Corporais/fisiologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Fibroblastos/fisiologia , Células-Tronco Mesenquimais/fisiologia , Curativos Oclusivos/efeitos adversos , Ferimentos e Lesões/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Líquidos Corporais/metabolismo , Linhagem Celular , Células Cultivadas , Feminino , Fibroblastos/citologia , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Pele/lesões , Pele/metabolismo , Cicatrização/fisiologia , Ferimentos e Lesões/etiologia
5.
Cell Adh Migr ; 10(1-2): 163-78, 2016 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-26744771

RESUMO

During placental development, continuous invasion of trophoblasts into the maternal compartment depends on the support of proliferating extravillous trophoblasts (EVTs). Unlike tumor cells, EVTs escape from the cell cycle before invasion into the decidua and spiral arteries. This study focused on the regulation properties of glycosylated and non-glycosylated matricellular CCN1 and CCN3, primarily for proliferation control in the benign SGHPL-5 trophoblast cell line, which originates from the first-trimester placenta. Treating SGHPL-5 trophoblast cells with the glycosylated forms of recombinant CCN1 and CCN3 decreased cell proliferation by bringing about G0/G1 cell cycle arrest, which was accompanied by the upregulation of activated Notch-1 and its target gene p21. Interestingly, both CCN proteins increased senescence-associated ß-galactosidase activity and the expression of the senescence marker p16. The migration capability of SGHPL-5 cells was mostly enhanced in response to CCN1 and CCN3, by the activation of FAK and Akt kinase but not by the activation of ERK1/2. In summary, both CCN proteins play a key role in regulating trophoblast cell differentiation by inducing senescence and enhancing migration properties. Reduced levels of CCN1 and CCN3, as found in early-onset preeclampsia, could contribute to a shift from invasive to proliferative EVTs and may explain their shallow invasion properties in this disease.


Assuntos
Movimento Celular , Senescência Celular , Proteína Rica em Cisteína 61/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Transdução de Sinais , Trofoblastos/citologia , Trofoblastos/metabolismo , Biomarcadores/metabolismo , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Proliferação de Células , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Modelos Biológicos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Notch/metabolismo , Regulação para Cima , beta-Galactosidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA