Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
EMBO J ; 42(7): e111961, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36574362

RESUMO

Cytosolic DNA promotes inflammatory responses upon detection by the cyclic GMP-AMP (cGAMP) synthase (cGAS). It has been suggested that cGAS downregulation is an immune escape strategy harnessed by tumor cells. Here, we used glioblastoma cells that show undetectable cGAS levels to address if alternative DNA detection pathways can promote pro-inflammatory signaling. We show that the DNA-PK DNA repair complex (i) drives cGAS-independent IRF3-mediated type I Interferon responses and (ii) that its catalytic activity is required for cGAS-dependent cGAMP production and optimal downstream signaling. We further show that the cooperation between DNA-PK and cGAS favors the expression of chemokines that promote macrophage recruitment in the tumor microenvironment in a glioblastoma model, a process that impairs early tumorigenesis but correlates with poor outcome in glioblastoma patients. Thus, our study supports that cGAS-dependent signaling is acquired during tumorigenesis and that cGAS and DNA-PK activities should be analyzed concertedly to predict the impact of strategies aiming to boost tumor immunogenicity.


Assuntos
Proteína Quinase Ativada por DNA , Glioblastoma , Nucleotidiltransferases , Humanos , Carcinogênese , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Glioblastoma/genética , Imunidade Inata , Inflamação , Nucleotidiltransferases/metabolismo , Microambiente Tumoral , Proteína Quinase Ativada por DNA/metabolismo
2.
Antimicrob Agents Chemother ; : e0056124, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38899926

RESUMO

Staphylococcus aureus is a pathogenic bacterium responsible for a broad spectrum of infections, including cutaneous, respiratory, osteoarticular, and systemic infections. It poses a significant clinical challenge due to its ability to develop antibiotic resistance. This resistance limits therapeutic options, increases the risk of severe complications, and underscores the urgent need for new strategies to address this threat, including the investigation of treatments complementary to antibiotics. The evaluation of novel antimicrobial agents often employs animal models, with the zebrafish embryo model being particularly interesting for studying host-pathogen interactions, establishing itself as a crucial tool in this field. For the first time, this study presents a zebrafish embryo model for the in vivo assessment of bacteriophage efficacy against S. aureus infection. A localized infection was induced by microinjecting either methicillin-resistant S. aureus (MRSA) or methicillin-susceptible S. aureus (MSSA). Subsequent treatments involved administering either bacteriophage, vancomycin (the reference antibiotic for MRSA), or a combination of both via the same route to explore potential synergistic effects. Our findings indicate that the bacteriophage was as effective as vancomycin in enhancing survival rates, whether used alone or in combination. Moreover, bacteriophage treatment appears to be even more effective in reducing the bacterial load in S. aureus-infected embryos post-treatment than the antibiotic. Our study validates the use of the zebrafish embryo model and highlights its potential as a valuable tool in assessing bacteriophage efficacy treatments in vivo.

3.
J Infect Dis ; 228(12): 1800-1804, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37343134

RESUMO

BACKGROUND: The transition from colonization to invasion is critical in diabetic foot ulcer (DFU). Staphylococcus aureus can colonize DFU, or invade the underlying tissues, causing serious infections. The ROSA-like prophage has previously been implicated in strain colonization characteristics of S aureus isolates in uninfected ulcers. METHODS: In this study, we investigated this prophage in the S aureus-colonizing strain using an in vitro chronic wound medium mimicking the chronic wound environment. RESULTS: Chronic wound medium reduced bacterial growth and increased biofilm formation and virulence in a zebrafish model. CONCLUSIONS: The ROSA-like prophage promoted intracellular survival of S aureus-colonizing strain in macrophages, keratinocytes, and osteoblasts.


Assuntos
Pé Diabético , Rosa , Infecções Estafilocócicas , Animais , Staphylococcus aureus , Virulência , Prófagos/genética , Peixe-Zebra , Pé Diabético/microbiologia , Infecções Estafilocócicas/microbiologia , Biofilmes
4.
Curr Issues Mol Biol ; 45(11): 9076-9083, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37998746

RESUMO

Recently, many studies demonstrated the fundamental role of the tumour microenvironment (TME) in cancer progression. Here, we describe a method to visualize in 3D the behaviour of tumours in zebrafish embryos. We highlight two major actors of the TME, macrophages and vessels. This valuable tool is transposable to Patient-Derived Xenograft imaging in order to predict the fate of malignant tumours according to the dynamics of their TME.

5.
Cell Mol Life Sci ; 77(17): 3453-3464, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31732791

RESUMO

During embryogenesis of all vertebrates, haematopoietic stem/progenitor cells (HSPCs) extrude from the aorta by a complex process named endothelial-to-haematopoietic transition (EHT). HSPCs will then colonize haematopoietic organs allowing haematopoiesis throughout adult life. The mechanism underlying EHT including the role of each aortic endothelial cell (EC) within the global aorta dynamics remains unknown. In the present study, we show for the first time that EHT involves the remodelling of individual cells within a collective migration of ECs which is tightly orchestrated, resulting in HSPCs extrusion in the sub-aortic space without compromising aorta integrity. By performing a cross-disciplinary study which combines high-resolution 4D imaging and theoretical analysis based on the concepts of classical mechanics, we propose that this complex developmental process is dependent on mechanical instabilities of the aorta preparing and facilitating the extrusion of HSPCs.


Assuntos
Aorta/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Amidas/farmacologia , Aminoquinolinas/farmacologia , Animais , Animais Geneticamente Modificados/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Células Endoteliais/citologia , Hematopoese , Células-Tronco Hematopoéticas/citologia , Microscopia de Fluorescência , Piridinas/farmacologia , Pirimidinas/farmacologia , Imagem com Lapso de Tempo , Peixe-Zebra/crescimento & desenvolvimento
6.
Int J Mol Sci ; 22(24)2021 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-34948410

RESUMO

Staphylococcus pettenkoferi is a coagulase-negative Staphylococcus identified in 2002 that has been implicated in human diseases as an opportunistic pathogenic bacterium. Its multiresistant character is becoming a major health problem, yet the pathogenicity of S. pettenkoferi is poorly characterized. In this study, the pathogenicity of a S. pettenkoferi clinical isolate from diabetic foot osteomyelitis was compared with a Staphylococcus aureus strain in various in vitro and in vivo experiments. Growth kinetics were compared against S. aureus, and bacteria survival was assessed in the RAW 264.7 murine macrophage cell line, the THP-1 human leukemia monocytic cell line, and the HaCaT human keratinocyte cell line. Ex vivo analysis was performed in whole blood survival assays and in vivo assays via the infection model of zebrafish embryos. Moreover, whole-genome analysis was performed. Our results show that S. pettenkoferi was able to survive in human blood, human keratinocytes, murine macrophages, and human macrophages. S. pettenkoferi demonstrated its virulence by causing substantial embryo mortality in the zebrafish model. Genomic analysis revealed virulence factors such as biofilm-encoding genes (e.g., icaABCD; rsbUVW) and regulator-encoding genes (e.g., agr, mgrA, sarA, saeS) well characterized in S. aureus. This study thus advances the knowledge of this under-investigated pathogen and validates the zebrafish infection model for this bacterium.


Assuntos
Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus/patogenicidade , Animais , Modelos Animais de Doenças , Genes Bacterianos , Humanos , Camundongos , Células RAW 264.7 , Infecções Estafilocócicas/epidemiologia , Staphylococcus/genética , Células THP-1 , Virulência , Peixe-Zebra
7.
Proc Natl Acad Sci U S A ; 111(10): E943-52, 2014 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-24567393

RESUMO

Mycobacterium abscessus is a rapidly growing Mycobacterium causing a wide spectrum of clinical syndromes. It now is recognized as a pulmonary pathogen to which cystic fibrosis patients have a particular susceptibility. The M. abscessus rough (R) variant, devoid of cell-surface glycopeptidolipids (GPLs), causes more severe clinical disease than the smooth (S) variant, but the underlying mechanisms of R-variant virulence remain obscure. Exploiting the optical transparency of zebrafish embryos, we observed that the increased virulence of the M. abscessus R variant compared with the S variant correlated with the loss of GPL production. The virulence of the R variant involved the massive production of serpentine cords, absent during S-variant infection, and the cords initiated abscess formation leading to rapid larval death. Cording occurred within the vasculature and was highly pronounced in the central nervous system (CNS). It appears that M. abscessus is transported to the CNS within macrophages. The release of M. abscessus from apoptotic macrophages initiated the formation of cords that grew too large to be phagocytized by macrophages or neutrophils. This study is a description of the crucial role of cording in the in vivo physiopathology of M. abscessus infection and emphasizes cording as a mechanism of immune evasion.


Assuntos
Abscesso/fisiopatologia , Fatores Corda/metabolismo , Glicolipídeos/metabolismo , Glicopeptídeos/metabolismo , Fatores Imunológicos/metabolismo , Infecções por Mycobacterium/fisiopatologia , Mycobacterium/patogenicidade , Animais , Ácido Clodrônico , Fatores Corda/imunologia , Primers do DNA/genética , Embrião não Mamífero , Histocitoquímica , Processamento de Imagem Assistida por Computador , Macrófagos/metabolismo , Microscopia de Fluorescência , Morfolinos/administração & dosagem , Morfolinos/genética , Mycobacterium/citologia , Mycobacterium/metabolismo , Fagocitose/fisiologia , Virulência , Peixe-Zebra
8.
Nat Methods ; 10(3): 256-8, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23377378

RESUMO

Parabiosis, the surgical generation of conjoined organisms sharing a common bloodstream, has been a powerful tool for studying hematopoietic cell migration and interaction with stromal niches in rodent and avian systems. We describe a technique to generate parabiotic zebrafish embryos based on blastula fusion. This procedure permits the in vivo visualization of hematopoietic cell migration and homing to niches and peripheral tissues in zebrafish parabiotes of different genetic backgrounds.


Assuntos
Movimento Celular/fisiologia , Rastreamento de Células/métodos , Embrião não Mamífero , Células-Tronco Hematopoéticas/fisiologia , Parabiose/métodos , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Microscopia Confocal , Microscopia de Fluorescência , Peixe-Zebra/genética , Peixe-Zebra/fisiologia
9.
Blood ; 123(2): 184-90, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24124088

RESUMO

Self-renewing hematopoietic stem/progenitor cells (HSPCs) produce blood cells of all lineages throughout life. Phosphatase and tensin homolog (PTEN), a tumor suppressor that antagonizes phosphatidylinositol 3-kinase (PI3K) signaling, is frequently mutated in hematologic malignancies such as bone marrow failure and leukemia. We set out to investigate whether Pten is required for hematopoiesis. Analysis of zebrafish mutants lacking functional Pten revealed that HSPCs colonized the caudal hematopoietic tissue normally. There, HSPCs hyperproliferated and engaged in all blood lineages. However, they failed to differentiate into mature blood cells. Hence, Pten mutant zebrafish embryos displayed hallmarks of leukemia in humans. Inhibition of PI3K signaling in mutants lacking functional Pten suppressed hyperproliferation and released the differentiation arrest. We conclude that Pten has an essential role in the balance between proliferation and differentiation of blood cells.


Assuntos
Diferenciação Celular/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/genética , Proliferação de Células/efeitos dos fármacos , Cromonas/farmacologia , Técnicas de Inativação de Genes , Hematopoese/genética , Células-Tronco Hematopoéticas/efeitos dos fármacos , Morfolinas/farmacologia , Mutação , Neutrófilos/citologia , Neutrófilos/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
10.
Nature ; 464(7285): 112-5, 2010 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-20154732

RESUMO

The ontogeny of haematopoietic stem cells (HSCs) during embryonic development is still highly debated, especially their possible lineage relationship to vascular endothelial cells. The first anatomical site from which cells with long-term HSC potential have been isolated is the aorta-gonad-mesonephros (AGM), more specifically the vicinity of the dorsal aortic floor. But although some authors have presented evidence that HSCs may arise directly from the aortic floor into the dorsal aortic lumen, others support the notion that HSCs first emerge within the underlying mesenchyme. Here we show by non-invasive, high-resolution imaging of live zebrafish embryos, that HSCs emerge directly from the aortic floor, through a stereotyped process that does not involve cell division but a strong bending then egress of single endothelial cells from the aortic ventral wall into the sub-aortic space, and their concomitant transformation into haematopoietic cells. The process is polarized not only in the dorso-ventral but also in the rostro-caudal versus medio-lateral direction, and depends on Runx1 expression: in Runx1-deficient embryos, the exit events are initially similar, but much rarer, and abort into violent death of the exiting cell. These results demonstrate that the aortic floor is haemogenic and that HSCs emerge from it into the sub-aortic space, not by asymmetric cell division but through a new type of cell behaviour, which we call an endothelial haematopoietic transition.


Assuntos
Aorta/citologia , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Endotélio Vascular/citologia , Células-Tronco Hematopoéticas/citologia , Peixe-Zebra/sangue , Animais , Animais Geneticamente Modificados , Aorta/embriologia , Morte Celular , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células Endoteliais/citologia , Endotélio Vascular/embriologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
11.
Haematologica ; 99(1): 70-5, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23872304

RESUMO

Mechanosensitivity is an inherent property of virtually all cell types, allowing them to sense and respond to physical environmental stimuli. Stretch-activated ion channels represent a class of mechanosensitive proteins which allow cells to respond rapidly to changes in membrane tension; however their identity has remained elusive. The piezo genes have recently been identified as a family of stretch-activated mechanosensitive ion channels. We set out to determine the role of piezo1 during zebrafish development. Here we report that morpholino-mediated knockdown of piezo1 impairs erythrocyte survival without affecting hematopoiesis or differentiation. Our results demonstrate that piezo1 is involved in erythrocyte volume homeostasis, disruption of which results in swelling/lysis of red blood cells and consequent anemia.


Assuntos
Volume de Eritrócitos/genética , Homeostase/genética , Canais Iônicos/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/sangue , Peixe-Zebra/genética , Animais , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes , Canais Iônicos/metabolismo , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/metabolismo
12.
Cell Death Dis ; 15(5): 305, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693109

RESUMO

Zebrafish is widely adopted as a grafting model for studying human development and diseases. Current zebrafish xenotransplantations are performed using embryo recipients, as the adaptive immune system, responsible for host versus graft rejection, only reaches maturity at juvenile stage. However, transplanted primary human hematopoietic stem/progenitor cells (HSC) rapidly disappear even in zebrafish embryos, suggesting that another barrier to transplantation exists before the onset of adaptive immunity. Here, using a labelled macrophage zebrafish line, we demonstrated that engraftment of human HSC induces a massive recruitment of macrophages which rapidly phagocyte transplanted cells. Macrophages depletion, by chemical or pharmacological treatments, significantly improved the uptake and survival of transplanted cells, demonstrating the crucial implication of these innate immune cells for the successful engraftment of human cells in zebrafish. Beyond identifying the reasons for human hematopoietic cell engraftment failure, this work images the fate of human cells in real time over several days in macrophage-depleted zebrafish embryos.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Macrófagos , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Macrófagos/metabolismo , Humanos , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Embrião não Mamífero/metabolismo , Transplante Heterólogo , Fagocitose
13.
PLoS One ; 19(3): e0301372, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547143

RESUMO

The importance of mitochondria in tissue homeostasis, stress responses and human diseases, combined to their ability to transition between various structural and functional states, makes them excellent organelles for monitoring cell health. There is therefore a need for technologies to accurately analyze and quantify changes in mitochondrial organization in a variety of cells and cellular contexts. Here we present an innovative computerized method that enables accurate, multiscale, fast and cost-effective analysis of mitochondrial shape and network architecture from confocal fluorescence images by providing more than thirty features. In order to facilitate interpretation of the quantitative results, we introduced two innovations: the use of Kiviat-graphs (herein named MitoSpider plots) to present highly multidimensional data and visualization of the various mito-cellular configurations in the form of morphospace diagrams (called MitoSigils). We tested our fully automated image analysis tool on rich datasets gathered from live normal human skin cells cultured under basal conditions or exposed to specific stress including UVB irradiation and pesticide exposure. We demonstrated the ability of our proprietary software (named MitoTouch) to sensitively discriminate between control and stressed dermal fibroblasts, and between normal fibroblasts and other cell types (including cancer tissue-derived fibroblasts and primary keratinocytes), showing that our automated analysis captures subtle differences in morphology. Based on this novel algorithm, we report the identification of a protective natural ingredient that mitigates the deleterious impact of hydrogen peroxide (H2O2) on mitochondrial organization. Hence we conceived a novel wet-plus-dry pipeline combining cell cultures, quantitative imaging and semiotic analysis for exhaustive analysis of mitochondrial morphology in living adherent cells. Our tool has potential for broader applications in other research areas such as cell biology and medicine, high-throughput drug screening as well as predictive and environmental toxicology.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Software , Processamento de Imagem Assistida por Computador/métodos , Algoritmos
14.
Dis Model Mech ; 16(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264878

RESUMO

Hereditary hemorrhagic telangiectasia (HHT) is a rare genetic disease caused by mutations affecting components of bone morphogenetic protein (BMP)/transforming growth factor-ß (TGF-ß) signaling in endothelial cells. This disorder is characterized by arteriovenous malformations that are prone to rupture, and the ensuing hemorrhages are responsible for iron-deficiency anemia. Along with activin receptor-like kinase (ALK1), mutations in endoglin are associated with the vast majority of HHT cases. In this study, we characterized the zebrafish endoglin locus and demonstrated that it produces two phylogenetically conserved protein isoforms. Functional analysis of a CRISPR/Cas9 zebrafish endoglin mutant revealed that Endoglin deficiency is lethal during the course from juvenile stage to adulthood. Endoglin-deficient zebrafish develop cardiomegaly, resulting in heart failure and hypochromic anemia, which both stem from chronic hypoxia. endoglin mutant zebrafish display structural alterations of the developing gills and underlying vascular network that coincide with hypoxia. Finally, phenylhydrazine treatment demonstrated that lowering hematocrit/blood viscosity alleviates heart failure and enhances the survival of Endoglin-deficient fish. Overall, our data link Endoglin deficiency to heart failure and establish zebrafish as a valuable HHT model.


Assuntos
Insuficiência Cardíaca , Telangiectasia Hemorrágica Hereditária , Animais , Endoglina/genética , Endoglina/metabolismo , Telangiectasia Hemorrágica Hereditária/complicações , Telangiectasia Hemorrágica Hereditária/genética , Peixe-Zebra , Células Endoteliais/metabolismo , Insuficiência Cardíaca/metabolismo , Receptores de Activinas Tipo II/genética
15.
Front Cell Infect Microbiol ; 12: 907314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782148

RESUMO

Staphylococcus aureus (S. aureus) is a common and virulent human pathogen causing several serious illnesses including skin abscesses, wound infections, endocarditis, osteomyelitis, pneumonia, and toxic shock syndrome. Antibiotics were first introduced in the 1940s, leading to the belief that bacterial illnesses would be eradicated. However, microorganisms, including S. aureus, began to develop antibiotic resistance from the increased use and abuse of antibiotics. Antibiotic resistance is now one of the most serious threats to global public health. Bacteria like methicillin-resistant Staphylococcus aureus (MRSA) remain a major problem despite several efforts to find new antibiotics. New treatment approaches are required, with bacteriophage treatment, a non-antibiotic strategy to treat bacterial infections, showing particular promise. The ability of S. aureus to resist a wide range of antibiotics makes it an ideal candidate for phage therapy studies. Bacteriophages have a relatively restricted range of action, enabling them to target pathogenic bacteria. Their usage, usually in the form of a cocktail of bacteriophages, allows for more focused treatment while also overcoming the emergence of resistance. However, many obstacles remain, particularly in terms of their effects in vivo, necessitating the development of animal models to assess the bacteriophage efficiency. Here, we provide a review of the animal models, the various clinical case treatments, and clinical trials for S. aureus phage therapy.


Assuntos
Bacteriófagos , Staphylococcus aureus Resistente à Meticilina , Terapia por Fagos , Infecções Estafilocócicas , Animais , Antibacterianos/uso terapêutico , Modelos Animais , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus
16.
J Clin Invest ; 132(8)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35230976

RESUMO

Germline mutations that activate genes in the canonical RAS/MAPK signaling pathway are responsible for rare human developmental disorders known as RASopathies. Here, we analyzed the molecular determinants of Costello syndrome (CS) using a mouse model expressing HRAS p.G12S, patient skin fibroblasts, hiPSC-derived human cardiomyocytes, a HRAS p.G12V zebrafish model, and human fibroblasts expressing lentiviral constructs carrying HRAS p.G12S or HRAS p.G12A mutations. The findings revealed alteration of mitochondrial proteostasis and defective oxidative phosphorylation in the heart and skeletal muscle of CS mice that were also found in the cell models of the disease. The underpinning mechanisms involved the inhibition of the AMPK signaling pathway by mutant forms of HRAS, leading to alteration of mitochondrial proteostasis and bioenergetics. Pharmacological activation of mitochondrial bioenergetics and quality control restored organelle function in HRAS p.G12A and p.G12S cell models, reduced left ventricle hypertrophy in CS mice, and diminished the occurrence of developmental defects in the CS zebrafish model. Collectively, these findings highlight the importance of mitochondrial proteostasis and bioenergetics in the pathophysiology of RASopathies and suggest that patients with CS may benefit from treatment with mitochondrial modulators.


Assuntos
Síndrome de Costello , Mutação em Linhagem Germinativa , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Síndrome de Costello/genética , Síndrome de Costello/metabolismo , Homeostase , Humanos , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
18.
Sci Rep ; 11(1): 10123, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33980872

RESUMO

In vitro, depending on extracellular matrix (ECM) architecture, macrophages migrate either in amoeboid or mesenchymal mode; while the first is a general trait of leukocytes, the latter is associated with tissue remodelling via Matrix Metalloproteinases (MMPs). To assess whether these stereotyped migrations could be also observed in a physiological context, we used the zebrafish embryo and monitored macrophage morphology, behaviour and capacity to mobilise haematopoietic stem/progenitor cells (HSPCs), as a final functional readout. Morphometric analysis identified 4 different cell shapes. Live imaging revealed that macrophages successively adopt all four shapes as they migrate through ECM. Treatment with inhibitors of MMPs or Rac GTPase to abolish mesenchymal migration, suppresses both ECM degradation and HSPC mobilisation while differently affecting macrophage behaviour. This study depicts real time macrophage behaviour in a physiological context and reveals extreme reactivity of these cells constantly adapting and switching migratory shapes to achieve HSPCs proper mobilisation.


Assuntos
Movimento Celular , Plasticidade Celular , Macrófagos/citologia , Macrófagos/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Transdução de Sinais , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Imunofluorescência , Humanos , Macrófagos/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra
19.
Sci Rep ; 11(1): 9316, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33927284

RESUMO

All blood cells originate from hematopoietic stem/progenitor cells (HSPCs). HSPCs are formed from endothelial cells (ECs) of the dorsal aorta (DA), via endothelial-to-hematopoietic transition (EHT). The zebrafish is a primary model organism to study the process in vivo. While the role of mechanical stress in controlling gene expression promoting cell differentiation is actively investigated, mechanisms driving shape changes of the DA and individual ECs remain poorly understood. We address this problem by developing a new DA micromechanical model and applying it to experimental data on zebrafish morphogenesis. The model considers the DA as an isotropic tubular membrane subjected to hydrostatic blood pressure and axial stress. The DA evolution is described as a movement in the dimensionless controlling parameters space: normalized hydrostatic pressure and axial stress. We argue that HSPC production is accompanied by two mechanical instabilities arising in the system due to the plane stress in the DA walls and show how a complex interplay between mechanical forces in the system drives the emerging morphological changes.


Assuntos
Aorta/fisiologia , Hematopoese , Células-Tronco Hematopoéticas/fisiologia , Modelos Cardiovasculares , Animais , Aorta/diagnóstico por imagem , Aorta/embriologia , Estresse Mecânico , Imagem com Lapso de Tempo , Peixe-Zebra
20.
Oncogene ; 40(15): 2741-2755, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33714985

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) are multipotent cells giving rise to all blood lineages during life. HSPCs emerge from the ventral wall of the dorsal aorta (VDA) during a specific timespan in embryonic development through endothelial hematopoietic transition (EHT). We investigated the ontogeny of HSPCs in mutant zebrafish embryos lacking functional pten, an important tumor suppressor with a central role in cell signaling. Through in vivo live imaging, we discovered that in pten mutant embryos a proportion of the HSPCs died upon emergence from the VDA, an effect rescued by inhibition of phosphatidylinositol-3 kinase (PI3K). Surprisingly, inhibition of PI3K in wild-type embryos also induced HSPC death. Surviving HSPCs colonized the caudal hematopoietic tissue (CHT) normally and committed to all blood lineages. Single-cell RNA sequencing indicated that inhibition of PI3K enhanced survival of multipotent progenitors, whereas the number of HSPCs with more stem-like properties was reduced. At the end of the definitive wave, loss of Pten caused a shift to more restricted progenitors at the expense of HSPCs. We conclude that PI3K signaling tightly controls HSPCs survival and both up- and downregulation of PI3K signaling reduces stemness of HSPCs.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Células-Tronco/metabolismo , Animais , Feminino , Humanos , Transdução de Sinais , Análise de Sobrevida , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA