Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 284, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573322

RESUMO

SELEX (Systematic Evolution of Ligands by Exponential enrichment) processes aim on the evolution of high-affinity aptamers as binding entities in diagnostics and biosensing. Aptamers can represent game-changers as constituents of diagnostic assays for the management of instantly occurring infectious diseases or other health threats. Without in-process quality control measures SELEX suffers from low overall success rates. We present a quantitative PCR method for fast and easy quantification of aptamers bound to their targets. Simultaneous determination of melting temperatures (Tm) of each SELEX round delivers information on the evolutionary success via the correlation of increasing GC content and Tm alone with a round-wise increase of aptamer affinity to the respective target. Based on nine successful and published previous SELEX processes, in which the evolution/selection of aptamer affinity/specificity was demonstrated, we here show the functionality of the IMPATIENT-qPCR for polyclonal aptamer libraries and resulting individual aptamers. Based on the ease of this new evolution quality control, we hope to introduce it as a valuable tool to accelerate SELEX processes in general. IMPATIENT-qPCR SELEX success monitoring. Selection and evolution of high-affinity aptamers using SELEX technology with direct aptamer evolution monitoring using melting curve shifting analyses to higher Tm by quantitative PCR with fluorescence dye SYBR Green I. KEY POINTS: • Fast and easy analysis. • Universal applicability shown for a series of real successful projects.


Assuntos
Bioensaio , Oligonucleotídeos , Controle de Qualidade , Temperatura
2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542416

RESUMO

Infections caused by yeasts of the genus Candida are likely to occur not only in immunocompromised patients but also in healthy individuals, leading to infections of the gastrointestinal tract, urinary tract, and respiratory tract. Due to the rapid increase in the frequency of reported Candidiasis cases in recent years, diagnostic research has become the subject of many studies, and therefore, we developed a polyclonal aptamer library-based fluorometric assay with high specificity and affinity towards Candida spec. to quantify the pathogens in clinical samples with high sensitivity. We recently obtained the specific aptamer library R10, which explicitly recognized Candida and evolved it by mimicking an early skin infection model caused by Candida using the FluCell-SELEX system. In the follow-up study presented here, we demonstrate that the aptamer library R10-based bioassay specifically recognizes invasive clinical Candida isolates, including not only C. albicans but also strains like C. tropcialis, C. krusei, or C. glabrata. The next-generation fluorometric bioassay presented here can reliably and easily detect an early Candida infection and could be used for further clinical research or could even be developed into a full in vitro diagnostic tool.


Assuntos
Candida , Candidíase , Humanos , Seguimentos , Candidíase/diagnóstico , Candidíase/tratamento farmacológico , Candida glabrata , Antifúngicos/uso terapêutico
3.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37047584

RESUMO

The Djungarian hamster (Phodopus sungorus) is a prominent model organism for seasonal acclimatization, showing drastic whole-body physiological adjustments to an energetically challenging environment, which are considered to also involve the gut microbiome. Fecal samples of hamsters in long photoperiod and again after twelve weeks in short photoperiod were analyzed by 16S-rRNA sequencing to evaluate seasonal changes in the respective gut microbiomes. In both photoperiods, the overall composition was stable in the major superordinate phyla of the microbiota, with distinct and delicate changes of abundance in phyla representing each <1% of all. Elusimicrobia, Tenericutes, and Verrucomicrobia were exclusively present in short photoperiod hamsters. In contrast to Elusimicrobium and Aneroplasma as representatives of Elusimicrobia and Tenericutes, Akkermansia muciniphila is a prominent gut microbiome inhabitant well described as important in the health context of animals and humans, including neurodegenerative diseases and obesity. Since diet was not changed, Akkermansia enrichment appears to be a direct consequence of short photoperiod acclimation. Future research will investigate whether the Djungarian hamster intestinal microbiome is responsible for or responsive to seasonal acclimation, focusing on probiotic supplementation.


Assuntos
Microbioma Gastrointestinal , Phodopus , Cricetinae , Animais , Humanos , Phodopus/fisiologia , Fotoperíodo , Akkermansia , Peso Corporal/fisiologia , Estações do Ano
4.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835264

RESUMO

Mollusks have been widely investigated for antimicrobial peptides because their humoral defense against pathogens is mainly based on these small biomolecules. In this report, we describe the identification of three novel antimicrobial peptides from the marine mollusk Nerita versicolor. A pool of N. versicolor peptides was analyzed with nanoLC-ESI-MS-MS technology, and three potential antimicrobial peptides (Nv-p1, Nv-p2 and Nv-p3) were identified with bioinformatical predictions and selected for chemical synthesis and evaluation of their biological activity. Database searches showed that two of them show partial identity to histone H4 peptide fragments from other invertebrate species. Structural predictions revealed that they all adopt a random coil structure even when placed near a lipid bilayer patch. Nv-p1, Nv-p2 and Nv-p3 exhibited activity against Pseudomonas aeruginosa. The most active peptide was Nv-p3 with an inhibitory activity starting at 1.5 µg/mL in the radial diffusion assays. The peptides were ineffective against Klebsiella pneumoniae, Listeria monocytogenes and Mycobacterium tuberculosis. On the other hand, these peptides demonstrated effective antibiofilm action against Candida albicans, Candida parapsilosis and Candida auris but not against the planktonic cells. None of the peptides had significant toxicity on primary human macrophages and fetal lung fibroblasts at effective antimicrobial concentrations. Our results indicate that N. versicolor-derived peptides represent new AMP sequences and have the potential to be optimized and developed into antibiotic alternatives against bacterial and fungal infections.


Assuntos
Anti-Infecciosos , Gastrópodes , Animais , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Moluscos , Testes de Sensibilidade Microbiana
5.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902270

RESUMO

Here we present for the first time a potential wound dressing material implementing aptamers as binding entities to remove pathogenic cells from newly contaminated surfaces of wound matrix-mimicking collagen gels. The model pathogen in this study was the Gram-negative opportunistic bacterium Pseudomonas aeruginosa, which represents a considerable health threat in hospital environments as a cause of severe infections of burn or post-surgery wounds. A two-layered hydrogel composite material was constructed based on an established eight-membered focused anti-P. aeruginosa polyclonal aptamer library, which was chemically crosslinked to the material surface to form a trapping zone for efficient binding of the pathogen. A drug-loaded zone of the composite released the C14R antimicrobial peptide to deliver it directly to the bound pathogenic cells. We demonstrate that this material combining aptamer-mediated affinity and peptide-dependent pathogen eradication can quantitatively remove bacterial cells from the "wound" surface, and we show that the surface-trapped bacteria are completely killed. The drug delivery function of the composite thus represents an extra safeguarding property and thus probably one of the most important additional advances of a next-generation or smart wound dressing ensuring the complete removal and/or eradication of the pathogen of a freshly infected wound.


Assuntos
Hidrogéis , Infecção dos Ferimentos , Humanos , Pseudomonas aeruginosa , Peptídeos Antimicrobianos , Infecção dos Ferimentos/microbiologia , Bandagens , Antibacterianos
6.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372935

RESUMO

Antimicrobial peptides (AMPs) represent a promising class of therapeutic biomolecules that show antimicrobial activity against a broad range of microorganisms, including life-threatening pathogens. In contrast to classic AMPs with membrane-disrupting activities, new peptides with a specific anti-biofilm effect are gaining in importance since biofilms could be the most important way of life, especially for pathogens, as the interaction with host tissues is crucial for the full development of their virulence in the event of infection. Therefore, in a previous study, two synthetic dimeric derivatives (parallel Dimer 1 and antiparallel Dimer 2) of the AMP Cm-p5 showed specific inhibition of the formation of Candida auris biofilms. Here we show that these derivatives are also dose-dependently effective against de novo biofilms that are formed by the widespread pathogenic yeasts C. albicans and C. parapsilosis. Moreover, the activity of the peptides was demonstrated even against two fluconazole-resistant strains of C. auris.


Assuntos
Candida albicans , Fluconazol , Fluconazol/farmacologia , Candida parapsilosis , Antifúngicos/farmacologia , Candida , Biofilmes , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
7.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293073

RESUMO

In more than 30 years of aptamer research, it has become widely accepted that aptamers are fascinating binding molecules for a vast variety of applications. However, the majority of targets have been proteins, although special variants of the so-called SELEX process for the molecular evolution of specific aptamers have also been developed, allowing for the targeting of small molecules as well as larger structures such as cells and even cellular networks of human (tumor) tissues. Although the provocative thesis is widely accepted in the field, that is, in principle, any level of complexity for SELEX targets is possible, the number of studies on whole organs or at least parts of them is limited. To pioneer this thesis, and based on our FluCell-SELEX process, here, we have developed polyclonal aptamer libraries against apices and the elongation/differentiation zones of plant roots as examples of organs. We show that dedicated libraries can specifically label the respective parts of the root, allowing us to distinguish them in fluorescence microscopy. We consider this achievement to be an initial but important evidence for the robustness of this SELEX variant. These libraries may be valuable tools for plant research and a promising starting point for the isolation of more specific individual aptamers directed against root-specific epitopes.


Assuntos
Aptâmeros de Nucleotídeos , Arabidopsis , Humanos , Aptâmeros de Nucleotídeos/química , Arabidopsis/genética , Arabidopsis/metabolismo , Epitopos , Técnica de Seleção de Aptâmeros , Raízes de Plantas/metabolismo
8.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35887092

RESUMO

Roseburia intestinalis has received attention as a potential probiotic bacterium. Recent studies have demonstrated that changes in its intestinal abundance can cause various diseases, such as obesity, enteritis and atherosclerosis. Probiotic administration or fecal transplantation alter the structure of the intestinal flora, offering possibilities for the prevention and treatment of these diseases. However, current monitoring methods, such as 16S rRNA sequencing, are complex and costly and require specialized personnel to perform the tests, making it difficult to continuously monitor patients during treatment. Hence, the rapid and cost-effective quantification of intestinal bacteria has become an urgent problem to be solved. Aptamers are of emerging interest because their stability, low immunogenicity and ease of modification are attractive properties for a variety of applications. We report a FluCell-SELEX polyclonal aptamer library specific for R. intestinalis isolated after seven evolution rounds, that can bind and label this organism for fluorescence microscopy and binding assays. Moreover, R. intestinalis can be distinguished from other major intestinal bacteria in complex defined mixtures and in human stool samples. We believe that this preliminary evidence opens new avenues towards aptamer-based electronic biosensors as new powerful and inexpensive diagnostic tools for the relative quantitative monitoring of R. intestinalis in gut microbiomes.


Assuntos
Aptâmeros de Nucleotídeos , Microbioma Gastrointestinal , Aptâmeros de Nucleotídeos/química , Bactérias/metabolismo , Clostridiales/genética , Humanos , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Técnica de Seleção de Aptâmeros/métodos
9.
Molecules ; 27(17)2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-36080459

RESUMO

Recent studies have demonstrated that changes in the abundance of the intestinal bacterium Blautia producta, a potential probiotic, are closely associated with the development of various diseases such as obesity, diabetes, some neurodegenerative diseases, and certain cancers. However, there is still a lack of an effective method to detect the abundance of B. producta in the gut rapidly. Especially, DNA aptamers are now widely used as biometric components for medical testing due to their unique characteristics, including high chemical stability, low production cost, ease of chemical modification, low immunogenicity, and fast reproducibility. We successfully obtained a high-affinity nucleic acid aptamer library (B.p-R14) after 14 SELEX rounds, which efficiently discriminates B. producta in different analysis techniques including fluorometric suspension assays or fluorescence microscopy from other major gut bacteria in complex mixtures and even in human stool samples. These preliminary findings will be the basis towards aptamer-based biosensing applications for the fast and reliable monitoring of B. producta in the human gut microbiome.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros , Aptâmeros de Nucleotídeos/genética , Bactérias , Clostridiales , Humanos , Reprodutibilidade dos Testes , Técnica de Seleção de Aptâmeros/métodos
10.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638764

RESUMO

Based on their unique properties, oligonucleotide aptamers have been named a gift of biological chemistry to life science. We report the development of DNA aptamers as the first high-affinity binding molecules available for fast and rapid labeling of the human gut bacterium Akkermansia muciniphila with a certain impact on Alzheimer´s disease. Fast and reliable analyses of the composition of microbiomes is an emerging field in microbiology. We describe the molecular evolution and biochemical characterization of a specific aptamer library by a FluCell-SELEX and the characterization of specific molecules from the library by bioinformatics. The aptamer AKK13.1 exerted universal applicability in different analysis techniques in modern microbiology, including fluorimetry, confocal laser scanning microscopy and flow cytometry. It was also functional as a specific binding entity hybridized to anchor primers chemically coupled via acrydite-modification to the surface of a polyacrylamide-hydrogel, which can be prototypically used for the construction of affinity surfaces in sensor chips. Together, the performance and methodological flexibility of the aptamers presented here may open new routes not only to develop novel Akkermansia-specific assays for clinical microbiology and the analyses of human stool samples but may also be an excellent starting point for the construction of novel electronic biosensors.


Assuntos
Doença de Alzheimer/microbiologia , Aptâmeros de Nucleotídeos/química , Fezes/microbiologia , Microbioma Gastrointestinal , Técnica de Seleção de Aptâmeros , Akkermansia , Humanos
11.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34681780

RESUMO

Systemic blood stream infections are a major threat to human health and are dramatically increasing worldwide. Pseudomonas aeruginosa is a WHO-alerted multi-resistant pathogen of extreme importance as a cause of sepsis. Septicemia patients have significantly increased survival chances if sepsis is diagnosed in the early stages. Affinity materials can not only represent attractive tools for specific diagnostics of pathogens in the blood but can prospectively also serve as the technical foundation of therapeutic filtration devices. Based on the recently developed aptamers directed against P. aeruginosa, we here present aptamer-functionalized beads for specific binding of this pathogen in blood samples. These aptamer capture beads (ACBs) are manufactured by crosslinking bovine serum albumin (BSA) in an emulsion and subsequent functionalization with the amino-modified aptamers on the bead surface using the thiol- and amino-reactive bispecific crosslinker PEG4-SPDP. Specific and quantitative binding of P. aeruginosa as the dedicated target of the ACBs was demonstrated in serum and blood. These initial but promising results may open new routes for the development of ACBs as a platform technology for fast and reliable diagnosis of bloodstream infections and, in the long term, blood filtration techniques in the fight against sepsis.


Assuntos
Aptâmeros de Nucleotídeos , Biblioteca Gênica , Pseudomonas aeruginosa/isolamento & purificação , Técnica de Seleção de Aptâmeros/métodos , Animais , Aptâmeros de Nucleotídeos/análise , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Hemólise , Humanos , Hidrogéis/química , Teste de Materiais , Microesferas , Infecções por Pseudomonas/sangue , Infecções por Pseudomonas/diagnóstico , Pseudomonas aeruginosa/genética , Sepse/sangue , Sepse/diagnóstico , Sepse/microbiologia , Soro/microbiologia , Soroalbumina Bovina/química , Ovinos , Ultrafiltração/métodos
12.
Front Cell Infect Microbiol ; 14: 1389020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601736

RESUMO

Introduction: Invasive candidiasis is a global public health problem as it poses a significant threat in hospital-settings. The aim of this study was to evaluate C14R, an analog derived from peptide BP100, as a potential antimicrobial peptide against the prevalent opportunistic yeast Candida albicans and the emergent multidrug-resistant yeast Candida auris. Methods: Antifungal susceptibility testing of C14R against 99 C. albicans and 105 C. auris clinical isolates from Colombia, was determined by broth microdilution. Fluconazole was used as a control antifungal. The synergy between C14R and fluconazole was assessed in resistant isolates. Assays against fungal biofilm and growth curves were also carried out. Morphological alterations of yeast cell surface were evaluated by scanning electron microscopy. A permeability assay verified the pore-forming ability of C14R. Results: C. albicans and C. auris isolates had a geometric mean MIC against C14R of 4.42 µg/ml and 5.34 µg/ml, respectively. Notably, none of the isolates of any species exhibited growth at the highest evaluated peptide concentration (200 µg/ml). Synergistic effects were observed when combining the peptide and fluconazole. C14R affects biofilm and growth of C. albicans and C. auris. Cell membrane disruptions were observed in both species after treatment with the peptide. It was confirmed that C14R form pores in C. albicans' membrane. Discussion: C14R has a potent antifungal activity against a large set of clinical isolates of both C. albicans and C. auris, showing its capacity to disrupt Candida membranes. This antifungal activity remains consistent across isolates regardless of their clinical source. Furthermore, the absence of correlation between MICs to C14R and resistance to fluconazole indicates the peptide's potential effectiveness against fluconazole-resistant strains. Our results suggest the potential of C14R, a pore-forming peptide, as a treatment option for fungal infections, such as invasive candidiasis, including fluconazole and amphotericin B -resistant strains.


Assuntos
Antifúngicos , Candidíase Invasiva , Candidíase , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida albicans , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Candida auris , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Fúngica
13.
Nanoscale Horiz ; 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39420595

RESUMO

The use of health-relevant bacteria originating from human microbiomes for the control or therapy of diseases, including neurodegenerative disorders or diabetes, is currently gaining increasing importance in medicine. Directed and successful engineering of microbiomes via probiotic supplementation requires subtle, precise as well as, more importantly, easy, fast and convenient monitoring of its success, e.g., in patients' gut. Based on a previously described polyclonal SELEX aptamer library evolved against the human gut bacterium Blautia producta, we finally isolated three individual aptamers that proved their performance concerning affinity, specificity and robustness in reliably labeling the target bacterium and in combination with "contaminating" control bacteria. Using biofunctionalization molecules on gFETs, we could specifically quantify 101-106 cells per mL, retrace their number in mixtures and determine aptamer Kd-values around 2 nM. These measurements were possible even in the context of a real human stool sample. Our results qualify gFETs in combination with BL2, BL7 and BL8 aptamers as a promising foundation for the construction of respective sensing devices, which will open new avenues towards developing an intended monitoring technique for probiotic therapy and microbiome engineering approaches.

14.
Microorganisms ; 12(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38543580

RESUMO

The establishment of sustainable processes for the production of commodity chemicals is one of today's central challenges for biotechnological industries. The chemo-autotrophic fixation of CO2 and the subsequent production of acetate by acetogenic bacteria via anaerobic gas fermentation represents a promising platform for the ecologically sustainable production of high-value biocommodities via sequential fermentation processes. In this study, the applicability of acetate-containing cell-free spent medium of the gas-fermenting acetogenic bacterium A. woodii WP1 as the feeder strain for growth and the recombinant production of P. aeruginosa PAO1 mono-rhamnolipids in the well-established nonpathogenic producer strain P. putida KT2440 were investigated. Additionally, the potential possibility of a simplified production process without the necessary separation of feeder strain cells was elucidated via the cultivation of P. putida in cell-containing A. woodii culture broth. For these cultures, the content of both strains was investigated by examining the relative quantification of strain-exclusive genes via qPCR. The recombinant production of mono-rhamnolipids was successfully achieved with maximum titers of approximately 360-400 mg/L for both cell-free and cell-containing A. woodii spent medium. The reported processes therefore represent a successful proof of principle for gas fermentation-derived acetate as a potential sustainable carbon source for future recombinant rhamnolipid production processes by P. putida KT2440.

15.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38256916

RESUMO

The diminishing portfolio of mankind's available antibiotics urges science to develop novel potent drugs. Here, we present a peptide fitting the typical blueprint of amphipathic and membrane-active antimicrobial peptides, denominated C14R. This 2 kDa peptide consists of 16 amino acid residues, with seven being either hydrophobic, aromatic, or non-polar, and nine being polar or positively charged, strictly separated on opposite sides of the predicted α-helix. The affinity of the peptide C14R to P. aeruginosa membranes and its intrinsic tendency to productively insert into membranes of such composition were analyzed by dynamic simulations. Its biological impact on the viability of two different P. aeruginosa reference strains was demonstrated by determining the minimal inhibitory concentrations (MICs), which were found to be in the range of 10-15 µg/mL. C14R's pore-forming capability was verified in a permeabilization assay based on the peptide-triggered uptake of fluorescent dyes into the bacterial cells. Finally, the peptide was used in radial diffusion assays, which are commonly used for susceptibility testing of antimicrobial peptides in clinical microbiology. In comparison to reference strains, six clinical P. aeruginosa isolates were clearly affected, thereby paving the way for further in-depth analyses of C14R as a promising new AMP drug in the future.

16.
Microorganisms ; 11(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764110

RESUMO

Rikenella microfusus is an essential intestinal probiotic with great potential. The latest research shows that imbalance in the intestinal flora are related to the occurrence of various diseases, such as intestinal diseases, immune diseases, and metabolic diseases. Rikenella may be a target or biomarker for some diseases, providing a new possibility for preventing and treating these diseases by monitoring and optimizing the abundance of Rikenella in the intestine. However, the current monitoring methods have disadvantages, such as long detection times, complicated operations, and high costs, which seriously limit the possibility of clinical application of microbiome-based treatment options. Therefore, the intention of this study was to evolve an enriched aptamer library to be used for specific labeling of R. microfusus, allowing rapid and low-cost detection methods and, ultimately the construction of aptamer-based biosensors. In this study, we used Rikenella as the target bacterium for an in vitro whole Cell-SELEX (Systematic Evolution of Ligands by EXponential Enrichment) to evolve and enrich specific DNA oligonucleotide aptamers. Five other prominent anaerobic gut bacteria were included in this process for counterselection and served as control cells. The aptamer library R.m-R13 was evolved with high specificity and strong affinity (Kd = 9.597 nM after 13 rounds of selection). With this enriched aptamer library, R. microfusus could efficiently be discriminated from the control bacteria in complex mixtures using different analysis techniques, including fluorescence microscopy or fluorometric suspension assays, and even in human stool samples. These preliminary results open new avenues toward the development of aptamer-based microbiome bio-sensing applications for fast and reliable monitoring of R. microfusus.

17.
J Fungi (Basel) ; 8(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36012844

RESUMO

Easy and reliable identification of pathogenic species such as yeasts, emerging as problematic microbes originating from the genus Candida, is a task in the management and treatment of infections, especially in hospitals and other healthcare environments. Aptamers are seizing an already indispensable role in different sensing applications as binding entities with almost arbitrarily tunable specificities and optimizable affinities. Here, we describe a polyclonal SELEX library that not only can specifically recognize and fluorescently label Candida cells, but is also capable to differentiate C. albicans, C. auris and C. parapsilosis cells in flow-cytometry, fluorometric microtiter plate assays and fluorescence microscopy from human cells, exemplified here by human dermal fibroblasts. This offers the opportunity to develop diagnostic tools based on this library. Moreover, these specific and robust affinity molecules could also serve in the future as potent binding entities on biomaterials and as constituents of technical devices and will thus open avenues for the development of cost-effective and easily accessible next generations of electronic biosensors in clinical diagnostics and novel materials for the specific removal of pathogenic cells from human bio-samples.

18.
Front Microbiol ; 13: 991145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147850

RESUMO

In a natural environment, bacteria are members of multispecies communities. To compete with rival species, bacteria produce antimicrobial peptides (AMPs), called bacteriocins. Bacteriocins are small, cationic, ribosomally synthesized peptides, which normally inhibit closely related species of the producing organism. Bacteriocin production is best studied in lactic bacteria (LAB). Streptococcus anginosus, belonging to LAB, produces the potent bacteriocin Angicin, which shows inhibitory activity against other streptococci, Listeria monocytogenes and vancomycin resistant Enterococcus faecium (VRE). Furthermore, Angicin shows a high resistance toward pH changes and heat, rendering it an interesting candidate for food preservation or clinical applications. The inhibitory activity of Angicin depends on the presence of a mannose phosphotransferase system (Man-PTS) in target cells, since L. monocytogenes harboring a deletion in an extracellular loop of this system is no longer sensitive to Angicin. Furthermore, we demonstrated by liposome leakage and pHluorin assays that Angicin destroys membrane integrity but shows only low cytotoxicity against human cell lines. In conclusion, we show that Angicin has a detrimental effect on the membrane of target organisms by using the Man-PTS as a receptor.

19.
Nanoscale Horiz ; 7(7): 770-778, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35695183

RESUMO

Oligonucleotide DNA aptamers represent an emergently important class of binding entities towards as different analytes as small molecules or even whole cells. Without requiring the canonical isolation of individual aptamers following the SELEX process, the focused polyclonal libraries prepared by this in vitro evolution and selection can directly be used to label their dedicated targets and to serve as binding molecules on surfaces. Here we report the first instance of a sensor able to discriminate between loaded and unloaded retinol-binding protein 4 (RBP4), an important biomarker for the prediction of diabetes and kidney disease. The sensor relies on two aptamer libraries tuned such that they discriminate between the protein isoforms, requiring no further sample labelling to detect RBP4 in both states. The evolution, binding properties of the libraries and the functionalization of graphene FET sensor chips are presented as well as the functionality of the resulting biosensor.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Grafite , Nefropatias , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Grafite/metabolismo , Humanos , Proteínas Plasmáticas de Ligação ao Retinol
20.
Pharmaceutics ; 14(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35214049

RESUMO

Antimicrobial peptides (AMPs) are an alternative group for the therapy of infectious diseases, with activity against a wide range of diverse pathogens. However, classical AMPs have significant side effects in human cells due to their unspecific pore formation in biomembranes. Nevertheless, AMPs are promising therapeutics and can be isolated from natural sources, which include sea and freshwater molluscs. The AMPs identified in these organisms show promising antimicrobial activities, as pathogens are mainly fought by innate defence mechanisms. An auspicious candidate among molluscs is the Cuban freshwater snail Pomacea poeyana, from which the peptides Pom-1 and Pom-2 have been isolated and studied. These studies revealed significant antimicrobial activities for both AMPs. Based on the activities determined, Pom-1 was used for further optimization. In order to meet the emerging requirements of improved anti-biofilm activity against naturally occurring Candida species, the six derivatives Pom-1A to F were developed and investigated. Analysis of the derivatives acting on the most abundant naturally occurring Candida yeast Candida albicans (C. albicans) revealed a strong anti-biofilm activity, especially induced by Pom-1 B, C, and D. Furthermore, a moderate decrease in the metabolic activity of planktonic yeast cells was observed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA