RESUMO
PURPOSE: In our previous study, we confirmed that the supplementation of vitrified-warmed murine oocytes with autologous adipose stem cell (ASC)-derived mitochondria during intracytoplasmic sperm injection enhances post-fertilization developmental competence in mice. To ensure the safety of this technology, we conducted a thorough study in mice to investigate the potential presence of specific malformations in offspring developed from this approach. METHODS: A transgenerational comparative analysis was conducted on founder mice from embryos that developed after mitochondrial supplementation, and two subsequent generations. Reproductive performance, body growth rate, histopathological parameters, hematological parameters, daily activity patterns, and daily body temperature changes in male and female mice across these three generations were assessed in comparison to wild-type mice of the same age. RESULTS: Both male and female animals in all three generations showed comparable reproductive performance to the control group. Additionally, body growth rate by the age of 8 weeks were found to be comparable to controls across all three generations. Notably, no significant histopathological abnormalities were detected in vital organs, including the brain, heart, liver, kidneys, lungs, ovaries, and testes, in any individuals from the studied cohorts. The blood parameters were consistent with the control data. The continuous monitoring of activity and body temperature changes (both day and night) over a 1-week period revealed a pattern closely resembling that observed in the control animals. CONCLUSION: Injection of ASC-mitochondria into oocytes may be a promising technique to support developmental potential without causing adverse epigenetic events in the offspring in mice. However, before considering clinical application, additional safety screening using larger animals or non-human primates is essential.
Assuntos
Mitocôndrias , Oócitos , Injeções de Esperma Intracitoplásmicas , Animais , Oócitos/crescimento & desenvolvimento , Feminino , Mitocôndrias/metabolismo , Camundongos , Masculino , Injeções de Esperma Intracitoplásmicas/métodos , Tecido Adiposo/citologia , Criopreservação/métodos , Células-Tronco/citologia , Células-Tronco/metabolismo , HumanosRESUMO
Polyphenols (PFs) extracted from green tea, known to be potent anti-oxidants, have been reported to be effective in increasing the motility and viability of mammalian sperm, preserved in a liquid form. Therefore, we tested whether PFs might also be effective for maintaining the integrity of frozen-thawed boar spermatozoa. Ejaculates, collected from Clawn miniature pigs, were diluted in a semen extender containing various amounts of PFs (0, 0.01, 0.05, 0.1 and 0.2% w/v) and then stored at 15°C overnight. The semen samples were processed, using the straw freezing procedure, and then frozen in liquid nitrogen. After rapid thawing at 40°C, the spermatozoa were subjected to several assays to evaluate semen quality. Spermatozoa frozen in a medium containing 0.01% w/v PFs exhibited significantly (P < 0.05) higher degrees of post-thawed viability and acrosomal integrity than those stored in the absence of PFs. However, no change in the mitochondrial activity was noted between the two groups. The inclusion of 0.01% PFs in the semen extender was significantly (P < 0.05) effective in increasing both the rates of monospermic oocyte formation and of blastocyst formation. These findings indicate that preincubation with the semen extender, containing 0.01% PFs prior to freezing, exerts a protective effect on boar sperm by preventing injuries associated with freezing-thawing.
Assuntos
Antioxidantes/farmacologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Criopreservação/métodos , Congelamento/efeitos adversos , Polifenóis/farmacologia , Espermatozoides , Chá/química , Animais , Masculino , Polifenóis/isolamento & purificação , Espermatozoides/patologia , Suínos , Porco MiniaturaRESUMO
The high incidence of polyspermy is one of the major obstacles during in vitro fertilization (IVF) in pigs. To overcome this, we developed a novel IVF method, which involves constant rotation. Oocytes matured in vitro were mixed with spermatozoa (0.2 × 10(5) sperm/mL) in an IVF medium (200 µL) using a 200 µL PCR tube. This tube was then rotated at 1 rpm for 6 h at 38.5°C in a rotation mixer (experimental group). A second PCR tube was simultaneously cultured without rotation (control group). The rate of polyspermy was evaluated 12 h after insemination and was significantly (P < 0.05; 21.0% vs. 48.3%) lower in the experimental group than in the control group. Sperm penetration rate was similar in oocytes from the experimental and control groups (75.2% vs. 83.1%). However, monospermic fertilization rate of the oocytes was significantly (P < 0.05; 44.8% vs. 21.2%) higher in the experimental group than in the control group. Furthermore, the rate of blastocyst formation (30.1% vs. 20.8%) increased in the experimental group, as compared to the control group. This present system will contribute to increase the efficacy of blastocyst production through reduction of polyspermic penetration.