Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 35(29): e2301172, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37148528

RESUMO

The shift-current photovoltaics of group-IV monochalcogenides has been predicted to be comparable to those of state-of-the-art Si-based solar cells. However, its exploration has been prevented from the centrosymmetric layer stacking in the thermodynamically stable bulk crystal. Herein, the non-centrosymmetric layer stacking of tin sulfide (SnS) is stabilized in the bottom regions of SnS crystals grown on a van der Waals substrate by physical vapor deposition and the shift current of SnS, by combining the polarization angle dependence and circular photogalvanic effect, is demonstrated. Furthermore, 180° ferroelectric domains in SnS are verified through both piezoresponse force microscopy and shift-current mapping techniques. Based on these results, an atomic model of the ferroelectric domain boundary is proposed. The direct observation of shift current and ferroelectric domains reported herein paves a new path for future studies on shift-current photovoltaics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA