Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Forecast ; 38(2): 489-504, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33071402

RESUMO

Researchers from various scientific disciplines have attempted to forecast the spread of coronavirus disease 2019 (COVID-19). The proposed epidemic prediction methods range from basic curve fitting methods and traffic interaction models to machine-learning approaches. If we combine all these approaches, we obtain the Network Inference-based Prediction Algorithm (NIPA). In this paper, we analyse a diverse set of COVID-19 forecast algorithms, including several modifications of NIPA. Among the algorithms that we evaluated, the original NIPA performed best at forecasting the spread of COVID-19 in Hubei, China and in the Netherlands. In particular, we show that network-based forecasting is superior to any other forecasting algorithm.

2.
Nature ; 489(7417): 537-40, 2012 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-22972194

RESUMO

The principle that 'popularity is attractive' underlies preferential attachment, which is a common explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections possessed by nodes follows power laws, as observed in many real networks. Preferential attachment has been directly validated for some real networks (including the Internet), and can be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks or duplication. Here we show that popularity is just one dimension of attractiveness; another dimension is similarity. We develop a framework in which new connections optimize certain trade-offs between popularity and similarity, instead of simply preferring popular nodes. The framework has a geometric interpretation in which popularity preference emerges from local optimization. As opposed to preferential attachment, our optimization framework accurately describes the large-scale evolution of technological (the Internet), social (trust relationships between people) and biological (Escherichia coli metabolic) networks, predicting the probability of new links with high precision. The framework that we have developed can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.


Assuntos
Internet/estatística & dados numéricos , Redes e Vias Metabólicas , Modelos Teóricos , Rede Social , Escherichia coli/metabolismo , Humanos , Modelos Biológicos , Probabilidade , Reprodutibilidade dos Testes , Confiança
3.
Hum Mol Genet ; 24(11): 3005-20, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25586491

RESUMO

Recent advances in genetics have spurred rapid progress towards the systematic identification of genes involved in complex diseases. Still, the detailed understanding of the molecular and physiological mechanisms through which these genes affect disease phenotypes remains a major challenge. Here, we identify the asthma disease module, i.e. the local neighborhood of the interactome whose perturbation is associated with asthma, and validate it for functional and pathophysiological relevance, using both computational and experimental approaches. We find that the asthma disease module is enriched with modest GWAS P-values against the background of random variation, and with differentially expressed genes from normal and asthmatic fibroblast cells treated with an asthma-specific drug. The asthma module also contains immune response mechanisms that are shared with other immune-related disease modules. Further, using diverse omics (genomics, gene-expression, drug response) data, we identify the GAB1 signaling pathway as an important novel modulator in asthma. The wiring diagram of the uncovered asthma module suggests a relatively close link between GAB1 and glucocorticoids (GCs), which we experimentally validate, observing an increase in the level of GAB1 after GC treatment in BEAS-2B bronchial epithelial cells. The siRNA knockdown of GAB1 in the BEAS-2B cell line resulted in a decrease in the NFkB level, suggesting a novel regulatory path of the pro-inflammatory factor NFkB by GAB1 in asthma.


Assuntos
Antiasmáticos/farmacologia , Asma/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antiasmáticos/uso terapêutico , Asma/tratamento farmacológico , Asma/metabolismo , Sequência de Bases , Relação Dose-Resposta a Droga , Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Inflamação/genética , Inflamação/metabolismo , Modelos Genéticos , NF-kappa B/genética , NF-kappa B/metabolismo , Mapeamento de Interação de Proteínas , Transdução de Sinais
4.
PNAS Nexus ; 3(6): pgae204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38846778

RESUMO

Epidemic forecasts are only as good as the accuracy of epidemic measurements. Is epidemic data, particularly COVID-19 epidemic data, clean, and devoid of noise? The complexity and variability inherent in data collection and reporting suggest otherwise. While we cannot evaluate the integrity of the COVID-19 epidemic data in a holistic fashion, we can assess the data for the presence of reporting delays. In our work, through the analysis of the first COVID-19 wave, we find substantial reporting delays in the published epidemic data. Motivated by the desire to enhance epidemic forecasts, we develop a statistical framework to detect, uncover, and remove reporting delays in the infectious, recovered, and deceased epidemic time series. Using our framework, we expose and analyze reporting delays in eight regions significantly affected by the first COVID-19 wave. Further, we demonstrate that removing reporting delays from epidemic data by using our statistical framework may decrease the error in epidemic forecasts. While our statistical framework can be used in combination with any epidemic forecast method that intakes infectious, recovered, and deceased data, to make a basic assessment, we employed the classical SIRD epidemic model. Our results indicate that the removal of reporting delays from the epidemic data may decrease the forecast error by up to 50%. We anticipate that our framework will be indispensable in the analysis of novel COVID-19 strains and other existing or novel infectious diseases.

5.
Phys Rev E ; 109(5-1): 054131, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38907500

RESUMO

We consider random hyperbolic graphs in hyperbolic spaces of any dimension d+1≥2. We present a rescaling of model parameters that casts the random hyperbolic graph model of any dimension to a unified mathematical framework, leaving the degree distribution invariant with respect to the dimension. Unlike the degree distribution, clustering does depend on the dimension, decreasing to 0 at d→∞. We analyze all of the other limiting regimes of the model, and we release a software package that generates random hyperbolic graphs and their limits in hyperbolic spaces of any dimension.

6.
Sci Rep ; 13(1): 11728, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474614

RESUMO

Interpreting natural language is an increasingly important task in computer algorithms due to the growing availability of unstructured textual data. Natural Language Processing (NLP) applications rely on semantic networks for structured knowledge representation. The fundamental properties of semantic networks must be taken into account when designing NLP algorithms, yet they remain to be structurally investigated. We study the properties of semantic networks from ConceptNet, defined by 7 semantic relations from 11 different languages. We find that semantic networks have universal basic properties: they are sparse, highly clustered, and many exhibit power-law degree distributions. Our findings show that the majority of the considered networks are scale-free. Some networks exhibit language-specific properties determined by grammatical rules, for example networks from highly inflected languages, such as e.g. Latin, German, French and Spanish, show peaks in the degree distribution that deviate from a power law. We find that depending on the semantic relation type and the language, the link formation in semantic networks is guided by different principles. In some networks the connections are similarity-based, while in others the connections are more complementarity-based. Finally, we demonstrate how knowledge of similarity and complementarity in semantic networks can improve NLP algorithms in missing link inference.

7.
Nat Commun ; 14(1): 186, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650144

RESUMO

Dynamic processes on networks, be it information transfer in the Internet, contagious spreading in a social network, or neural signaling, take place along shortest or nearly shortest paths. Computing shortest paths is a straightforward task when the network of interest is fully known, and there are a plethora of computational algorithms for this purpose. Unfortunately, our maps of most large networks are substantially incomplete due to either the highly dynamic nature of networks, or high cost of network measurements, or both, rendering traditional path finding methods inefficient. We find that shortest paths in large real networks, such as the network of protein-protein interactions and the Internet at the autonomous system level, are not random but are organized according to latent-geometric rules. If nodes of these networks are mapped to points in latent hyperbolic spaces, shortest paths in them align along geodesic curves connecting endpoint nodes. We find that this alignment is sufficiently strong to allow for the identification of shortest path nodes even in the case of substantially incomplete networks, where numbers of missing links exceed those of observable links. We demonstrate the utility of latent-geometric path finding in problems of cellular pathway reconstruction and communication security.


Assuntos
Algoritmos , Transdução de Sinais , Comunicação , Comunicação Celular
8.
PLoS One ; 16(11): e0260015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34793504

RESUMO

State governments in the U.S. have been facing difficult decisions involving tradeoffs between economic and health-related outcomes during the COVID-19 pandemic. Despite evidence of the effectiveness of government-mandated restrictions mitigating the spread of contagion, these orders are stigmatized due to undesirable economic consequences. This tradeoff resulted in state governments employing mandates at widely different ways. We compare the different policies states implemented during periods of restriction ("lockdown") and reopening with indicators of COVID-19 spread and consumer card spending at each state during the first "wave" of the pandemic in the U.S. between March and August 2020. We find that while some states enacted reopening decisions when the incidence rate of COVID-19 was minimal or sustained in its relative decline, other states relaxed socioeconomic restrictions near their highest incidence and prevalence rates experienced so far. Nevertheless, all states experienced similar trends in consumer card spending recovery, which was strongly correlated with reopening policies following the lockdowns and relatively independent from COVID-19 incidence rates at the time. Our findings suggest that consumer card spending patterns can be attributed to government mandates rather than COVID-19 incidence in the states. We estimate the recovery in states that reopened in late April was more than the recovery in states that did not reopen in the same period- 15% for consumer card spending and 18% for spending by high income households. This result highlights the important role of state policies in minimizing health impacts while promoting economic recovery and helps planning effective interventions in subsequent waves and immunization efforts.


Assuntos
COVID-19/economia , Pandemias/economia , Políticas , COVID-19/epidemiologia , Humanos , Estados Unidos/epidemiologia
9.
Phys Rev E ; 97(1-1): 012309, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29448477

RESUMO

We analyze the stability of the network's giant connected component under impact of adverse events, which we model through the link percolation. Specifically, we quantify the extent to which the largest connected component of a network consists of the same nodes, regardless of the specific set of deactivated links. Our results are intuitive in the case of single-layered systems: the presence of large degree nodes in a single-layered network ensures both its robustness and stability. In contrast, we find that interdependent networks that are robust to adverse events have unstable connected components. Our results bring novel insights to the design of resilient network topologies and the reinforcement of existing networked systems.

10.
Sci Rep ; 8(1): 14439, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30262855

RESUMO

The polygenic nature of complex diseases offers potential opportunities to utilize network-based approaches that leverage the comprehensive set of protein-protein interactions (the human interactome) to identify new genes of interest and relevant biological pathways. However, the incompleteness of the current human interactome prevents it from reaching its full potential to extract network-based knowledge from gene discovery efforts, such as genome-wide association studies, for complex diseases like chronic obstructive pulmonary disease (COPD). Here, we provide a framework that integrates the existing human interactome information with experimental protein-protein interaction data for FAM13A, one of the most highly associated genetic loci to COPD, to find a more comprehensive disease network module. We identified an initial disease network neighborhood by applying a random-walk method. Next, we developed a network-based closeness approach (CAB) that revealed 9 out of 96 FAM13A interacting partners identified by affinity purification assays were significantly close to the initial network neighborhood. Moreover, compared to a similar method (local radiality), the CAB approach predicts low-degree genes as potential candidates. The candidates identified by the network-based closeness approach were combined with the initial network neighborhood to build a comprehensive disease network module (163 genes) that was enriched with genes differentially expressed between controls and COPD subjects in alveolar macrophages, lung tissue, sputum, blood, and bronchial brushing datasets. Overall, we demonstrate an approach to find disease-related network components using new laboratory data to overcome incompleteness of the current interactome.


Assuntos
Bases de Dados Genéticas , Proteínas Ativadoras de GTPase , Loci Gênicos , Predisposição Genética para Doença , Doença Pulmonar Obstrutiva Crônica , Feminino , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Masculino , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo
11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(5 Pt 2): 056115, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17677141

RESUMO

We study the betweenness centrality of fractal and nonfractal scale-free network models as well as real networks. We show that the correlation between degree and betweenness centrality C of nodes is much weaker in fractal network models compared to nonfractal models. We also show that nodes of both fractal and nonfractal scale-free networks have power-law betweenness centrality distribution P(C) approximately C(-delta). We find that for nonfractal scale-free networks delta=2, and for fractal scale-free networks delta=2-1/dB, where dB is the dimension of the fractal network. We support these results by explicit calculations on four real networks: pharmaceutical firms (N=6776), yeast (N=1458), WWW (N=2526), and a sample of Internet network at the autonomous system level (N=20566), where N is the number of nodes in the largest connected component of a network. We also study the crossover phenomenon from fractal to nonfractal networks upon adding random edges to a fractal network. We show that the crossover length l*, separating fractal and nonfractal regimes, scales with dimension dB of the network as p(-1/dB), where p is the density of random edges added to the network. We find that the correlation between degree and betweenness centrality increases with p.

12.
Phys Rev E ; 95(3-1): 032309, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415237

RESUMO

Despite the abundance of bipartite networked systems, their organizing principles are less studied compared to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor in common in the bipartite network. Even though these projections allow one to study bipartite networks using tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for analyzing bipartite systems that is based on the observation that such systems have a latent metric structure: network nodes are points in a latent metric space, while connections are more likely to form between nodes separated by shorter distances. This approach has been developed for unipartite networks, and relatively little is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.

13.
Sci Adv ; 3(12): e1701079, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29291243

RESUMO

Urban transportation systems are vulnerable to congestion, accidents, weather, special events, and other costly delays. Whereas typical policy responses prioritize reduction of delays under normal conditions to improve the efficiency of urban road systems, analytic support for investments that improve resilience (defined as system recovery from additional disruptions) is still scarce. In this effort, we represent paved roads as a transportation network by mapping intersections to nodes and road segments between the intersections to links. We built road networks for 40 of the urban areas defined by the U.S. Census Bureau. We developed and calibrated a model to evaluate traffic delays using link loads. The loads may be regarded as traffic-based centrality measures, estimating the number of individuals using corresponding road segments. Efficiency was estimated as the average annual delay per peak-period auto commuter, and modeled results were found to be close to observed data, with the notable exception of New York City. Resilience was estimated as the change in efficiency resulting from roadway disruptions and was found to vary between cities, with increased delays due to a 5% random loss of road linkages ranging from 9.5% in Los Angeles to 56.0% in San Francisco. The results demonstrate that many urban road systems that operate inefficiently under normal conditions are nevertheless resilient to disruption, whereas some more efficient cities are more fragile. The implication is that resilience, not just efficiency, should be considered explicitly in roadway project selection and justify investment opportunities related to disaster and other disruptions.

14.
Sci Rep ; 6: 35241, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748412

RESUMO

Genes carrying mutations associated with genetic diseases are present in all human cells; yet, clinical manifestations of genetic diseases are usually highly tissue-specific. Although some disease genes are expressed only in selected tissues, the expression patterns of disease genes alone cannot explain the observed tissue specificity of human diseases. Here we hypothesize that for a disease to manifest itself in a particular tissue, a whole functional subnetwork of genes (disease module) needs to be expressed in that tissue. Driven by this hypothesis, we conducted a systematic study of the expression patterns of disease genes within the human interactome. We find that genes expressed in a specific tissue tend to be localized in the same neighborhood of the interactome. By contrast, genes expressed in different tissues are segregated in distinct network neighborhoods. Most important, we show that it is the integrity and the completeness of the expression of the disease module that determines disease manifestation in selected tissues. This approach allows us to construct a disease-tissue network that confirms known and predicts unexpected disease-tissue associations.


Assuntos
Redes Reguladoras de Genes , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Especificidade de Órgãos , Biologia Computacional , Feminino , Perfilação da Expressão Gênica , Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Hipotálamo/patologia , Fígado/patologia , Masculino , Modelos Estatísticos , Mutação , Córtex Pré-Frontal/metabolismo , Mapeamento de Interação de Proteínas , Distribuição Tecidual , Transcriptoma
15.
PLoS One ; 10(11): e0141481, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26529312

RESUMO

Data transfer is one of the main functions of the Internet. The Internet consists of a large number of interconnected subnetworks or domains, known as Autonomous Systems (ASes). Due to privacy and other reasons the information about what route to use to reach devices within other ASes is not readily available to any given AS. The Border Gateway Protocol (BGP) is responsible for discovering and distributing this reachability information to all ASes. Since the topology of the Internet is highly dynamic, all ASes constantly exchange and update this reachability information in small chunks, known as routing control packets or BGP updates. In the view of the quick growth of the Internet there are significant concerns with the scalability of the BGP updates and the efficiency of the BGP routing in general. Motivated by these issues we conduct a systematic time series analysis of BGP update rates. We find that BGP update time series are extremely volatile, exhibit long-term correlations and memory effects, similar to seismic time series, or temperature and stock market price fluctuations. The presented statistical characterization of BGP update dynamics could serve as a basis for validation of existing and developing better models of Internet interdomain routing.


Assuntos
Armazenamento e Recuperação da Informação , Internet , Modelos Teóricos
16.
Science ; 347(6224): 1257601, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25700523

RESUMO

According to the disease module hypothesis, the cellular components associated with a disease segregate in the same neighborhood of the human interactome, the map of biologically relevant molecular interactions. Yet, given the incompleteness of the interactome and the limited knowledge of disease-associated genes, it is not obvious if the available data have sufficient coverage to map out modules associated with each disease. Here we derive mathematical conditions for the identifiability of disease modules and show that the network-based location of each disease module determines its pathobiological relationship to other diseases. For example, diseases with overlapping network modules show significant coexpression patterns, symptom similarity, and comorbidity, whereas diseases residing in separated network neighborhoods are phenotypically distinct. These tools represent an interactome-based platform to predict molecular commonalities between phenotypically related diseases, even if they do not share primary disease genes.


Assuntos
Doença/etiologia , Predisposição Genética para Doença , Serviços de Informação , Mapas de Interação de Proteínas , Comorbidade , Doença/genética , Humanos
17.
Sci Rep ; 2: 793, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23162688

RESUMO

Prediction and control of the dynamics of complex networks is a central problem in network science. Structural and dynamical similarities of different real networks suggest that some universal laws might accurately describe the dynamics of these networks, albeit the nature and common origin of such laws remain elusive. Here we show that the causal network representing the large-scale structure of spacetime in our accelerating universe is a power-law graph with strong clustering, similar to many complex networks such as the Internet, social, or biological networks. We prove that this structural similarity is a consequence of the asymptotic equivalence between the large-scale growth dynamics of complex networks and causal networks. This equivalence suggests that unexpectedly similar laws govern the dynamics of complex networks and spacetime in the universe, with implications to network science and cosmology.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(2 Pt 2): 026114, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21929071

RESUMO

We introduce and study random bipartite networks with hidden variables. Nodes in these networks are characterized by hidden variables that control the appearance of links between node pairs. We derive analytic expressions for the degree distribution, degree correlations, the distribution of the number of common neighbors, and the bipartite clustering coefficient in these networks. We also establish the relationship between degrees of nodes in original bipartite networks and in their unipartite projections. We further demonstrate how hidden variable formalism can be applied to analyze topological properties of networks in certain bipartite network models, and verify our analytical results in numerical simulations.

19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 2): 036106, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21230138

RESUMO

We develop a geometric framework to study the structure and function of complex networks. We assume that hyperbolic geometry underlies these networks, and we show that with this assumption, heterogeneous degree distributions and strong clustering in complex networks emerge naturally as simple reflections of the negative curvature and metric property of the underlying hyperbolic geometry. Conversely, we show that if a network has some metric structure, and if the network degree distribution is heterogeneous, then the network has an effective hyperbolic geometry underneath. We then establish a mapping between our geometric framework and statistical mechanics of complex networks. This mapping interprets edges in a network as noninteracting fermions whose energies are hyperbolic distances between nodes, while the auxiliary fields coupled to edges are linear functions of these energies or distances. The geometric network ensemble subsumes the standard configuration model and classical random graphs as two limiting cases with degenerate geometric structures. Finally, we show that targeted transport processes without global topology knowledge, made possible by our geometric framework, are maximally efficient, according to all efficiency measures, in networks with strongest heterogeneity and clustering, and that this efficiency is remarkably robust with respect to even catastrophic disturbances and damages to the network structure.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(3 Pt 2): 036117, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20365825

RESUMO

We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.


Assuntos
Tecnologia Biomédica , Meios de Comunicação , Serviços de Informação , Modelos Econômicos , Algoritmos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA