Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 137(7): 1259-71, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19563758

RESUMO

Retinoic acid (RA) triggers antiproliferative effects in tumor cells, and therefore RA and its synthetic analogs have great potential as anticarcinogenic agents. Retinoic acid receptors (RARs) mediate RA effects by directly regulating gene expression. To define the genetic network regulated by RARs in breast cancer, we identified RAR genomic targets using chromatin immunoprecipitation and expression analysis. We found that RAR binding throughout the genome is highly coincident with estrogen receptor alpha (ERalpha) binding, resulting in a widespread crosstalk of RA and estrogen signaling to antagonistically regulate breast cancer-associated genes. ERalpha- and RAR-binding sites appear to be coevolved on a large scale throughout the human genome, often resulting in competitive binding activity at nearby or overlapping cis-regulatory elements. The highly coordinated intersection between these two critical nuclear hormone receptor signaling pathways provides a global mechanism for balancing gene expression output via local regulatory interactions dispersed throughout the genome.


Assuntos
Neoplasias da Mama/metabolismo , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Receptores do Ácido Retinoico/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Proliferação de Células , Estrogênios/metabolismo , Genoma Humano , Humanos , Receptor alfa de Ácido Retinoico , Tretinoína/metabolismo , Receptor gama de Ácido Retinoico
2.
Mol Cell ; 63(3): 420-32, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27425409

RESUMO

Recent studies suggest that the microprocessor (Drosha-DGCR8) complex can be recruited to chromatin to catalyze co-transcriptional processing of primary microRNAs (pri-miRNAs) in mammalian cells. However, the molecular mechanism of co-transcriptional miRNA processing is poorly understood. Here we find that HP1BP3, a histone H1-like chromatin protein, specifically associates with the microprocessor and promotes global miRNA biogenesis in human cells. Chromatin immunoprecipitation (ChIP) studies reveal genome-wide co-localization of HP1BP3 and Drosha and HP1BP3-dependent Drosha binding to actively transcribed miRNA loci. Moreover, HP1BP3 specifically binds endogenous pri-miRNAs and facilitates the Drosha/pri-miRNA association in vivo. Knockdown of HP1BP3 compromises pri-miRNA processing by causing premature release of pri-miRNAs from the chromatin. Taken together, these studies suggest that HP1BP3 promotes co-transcriptional miRNA processing via chromatin retention of nascent pri-miRNA transcripts. This work significantly expands the functional repertoire of the H1 family of proteins and suggests the existence of chromatin retention factors for widespread co-transcriptional miRNA processing.


Assuntos
Cromatina/metabolismo , MicroRNAs/biossíntese , Proteínas Nucleares/metabolismo , Processamento Pós-Transcricional do RNA , Transcrição Gênica , Animais , Sítios de Ligação , Cromatina/genética , Imunoprecipitação da Cromatina , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , Proteínas de Ligação a DNA , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma Humano , Células HeLa , Humanos , MicroRNAs/genética , Proteínas Nucleares/genética , Ligação Proteica , Interferência de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Transfecção
3.
Proc Natl Acad Sci U S A ; 115(48): 12102-12111, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30420515

RESUMO

The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is a master regulator of adipocyte differentiation and is the target for the insulin-sensitizing thiazolidinedione (TZD) drugs used to treat type 2 diabetes. In cell-based in vitro studies, the transcriptional activity of PPARγ is inhibited by covalent attachment of small ubiquitin-related modifier (SUMOylation) at K107 in its N terminus. However, whether this posttranslational modification is relevant in vivo remains unclear. Here, using mice homozygous for a mutation (K107R) that prevents SUMOylation at this position, we demonstrate that PPARγ is SUMOylated at K107 in white adipose tissue. We further show that in the context of diet-induced obesity PPARγ-K107R-mutant mice have enhanced insulin sensitivity without the corresponding increase in adiposity that typically accompanies PPARγ activation by TZDs. Accordingly, the PPARγ-K107R mutation was weaker than TZD treatment in stimulating adipocyte differentiation in vitro. Moreover, we found that both the basal and TZD-dependent transcriptomes of inguinal and epididymal white adipose tissue depots were markedly altered in the K107R-mutant mice. We conclude that PPARγ SUMOylation at K107 is physiologically relevant and may serve as a pharmacologic target for uncoupling PPARγ's beneficial insulin-sensitizing effect from its adverse effect of weight gain.


Assuntos
Adiposidade , Insulina/metabolismo , Lisina/metabolismo , Obesidade/metabolismo , PPAR gama/metabolismo , Tecido Adiposo/metabolismo , Motivos de Aminoácidos , Animais , Feminino , Humanos , Lisina/genética , Masculino , Camundongos , Mutação de Sentido Incorreto , Obesidade/genética , Obesidade/fisiopatologia , PPAR gama/química , PPAR gama/genética , Proteína SUMO-1 , Sumoilação
4.
PLoS Genet ; 13(3): e1006589, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28263985

RESUMO

Breast cancer, the second leading cause of cancer death of women worldwide, is a heterogenous disease with multiple different subtypes. These subtypes carry important implications for prognosis and therapy. Interestingly, it is known that these different subtypes not only have different biological behaviors, but also have distinct gene expression profiles. However, it has not been rigorously explored whether particular transcriptional isoforms are also differentially expressed among breast cancer subtypes, or whether transcript isoforms from the same sets of genes can be used to differentiate subtypes. To address these questions, we analyzed the patterns of transcript isoform expression using a small set of RNA-sequencing data for eleven Estrogen Receptor positive (ER+) subtype and fourteen triple negative (TN) subtype tumors. We identified specific sets of isoforms that distinguish these tumor subtypes with higher fidelity than standard mRNA expression profiles. We found that alternate promoter usage, alternative splicing, and alternate 3'UTR usage are differentially regulated in breast cancer subtypes. Profiling of isoform expression in a second, independent cohort of 68 tumors confirmed that expression of splice isoforms differentiates breast cancer subtypes. Furthermore, analysis of RNAseq data from 594 cases from the TCGA cohort confirmed the ability of isoform usage to distinguish breast cancer subtypes. Also using our expression data, we identified several RNA processing factors that were differentially expressed between tumor subtypes and/or regulated by estrogen receptor, including YBX1, YBX2, MAGOH, MAGOHB, and PCBP2. RNAi knock-down of these RNA processing factors in MCF7 cells altered isoform expression. These results indicate that global dysregulation of splicing in breast cancer occurs in a subtype-specific and reproducible manner and is driven by specific differentially expressed RNA processing factors.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Regiões 3' não Traduzidas , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Estudos de Coortes , Receptor alfa de Estrogênio/genética , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Células MCF-7 , Pessoa de Meia-Idade , Prognóstico , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA
5.
Dev Biol ; 433(2): 324-343, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29108672

RESUMO

Understanding how somatic stem cells respond to tissue needs is important, since aberrant somatic stem cell behaviors may lead to tissue degeneration or tumorigenesis. Here, from an in vivo RNAi screen targeting transcription factors that regulate intestinal regeneration, we uncovered a requirement for the Drosophila FoxA transcription factor Fork head (Fkh) in the maintenance of intestinal stem/progenitor cell identities. FoxA/Fkh maintains the expressions of stem/progenitor cell markers and is required for stem cell proliferation during intestinal homeostasis and regeneration. Furthermore, FoxA/Fkh prevents the intestinal stem/progenitor cells from precocious differentiation into the Enterocyte lineage, likely in cooperation with the transcription factor bHLH/Daughterless (Da). In addition, loss of FoxA/Fkh suppresses the intestinal tumorigenesis caused by Notch pathway inactivation. To reveal the gene program underlying stem/progenitor cell identities, we profiled the genome-wide chromatin binding sites of transcription factors Fkh and Da, and interestingly, around half of Fkh binding regions are shared by Da, further suggesting their collaborative roles. Finally, we identified the genes associated with their shared binding regions. This comprehensive gene list may contain stem/progenitor maintenance factors functioning downstream of Fkh and Da, and would be helpful for future gene discoveries in the Drosophila intestinal stem cell lineage.


Assuntos
Drosophila melanogaster/fisiologia , Fatores de Transcrição Forkhead/fisiologia , Intestinos/citologia , Proteínas Nucleares/fisiologia , Células-Tronco/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Sítios de Ligação , Linhagem da Célula , Autorrenovação Celular , Cromatina/metabolismo , Citocinas/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Enterócitos/metabolismo , Regulação da Expressão Gênica , Interferência de RNA , Fatores de Transcrição/fisiologia
6.
EMBO J ; 32(12): 1681-701, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23685356

RESUMO

Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the telomerase complex to telomeres through a not yet fully understood mechanism. Factors promoting telomerase-telomere interaction are expected to directly bind telomeres and physically interact with the telomerase complex. In search for such a factor we carried out a SILAC-based DNA-protein interaction screen and identified HMBOX1, hereafter referred to as homeobox telomere-binding protein 1 (HOT1). HOT1 directly and specifically binds double-stranded telomere repeats, with the in vivo association correlating with binding to actively processed telomeres. Depletion and overexpression experiments classify HOT1 as a positive regulator of telomere length. Furthermore, immunoprecipitation and cell fractionation analyses show that HOT1 associates with the active telomerase complex and promotes chromatin association of telomerase. Collectively, these findings suggest that HOT1 supports telomerase-dependent telomere elongation.


Assuntos
Proteínas de Homeodomínio/metabolismo , Complexos Multiproteicos/metabolismo , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Cromatina/genética , Cromatina/metabolismo , Células HeLa , Proteínas de Homeodomínio/genética , Humanos , Complexos Multiproteicos/genética , Sequências Repetitivas de Ácido Nucleico/fisiologia , Telomerase/genética , Telômero/genética , Proteínas de Ligação a Telômeros/genética
7.
PLoS Genet ; 10(3): e1004200, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24625679

RESUMO

Specialized microenvironments called niches regulate tissue homeostasis by controlling the balance between stem cell self-renewal and the differentiation of stem cell daughters. However the mechanisms that govern the formation, size and signaling of in vivo niches remain poorly understood. Loss of the highly conserved histone demethylase Lsd1 in Drosophila escort cells results in increased BMP signaling outside the cap cell niche and an expanded germline stem cell (GSC) phenotype. Here we present evidence that loss of Lsd1 also results in gradual changes in escort cell morphology and their eventual death. To better characterize the function of Lsd1 in different cell populations within the ovary, we performed Chromatin immunoprecipitation coupled with massive parallel sequencing (ChIP-seq). This analysis shows that Lsd1 associates with a surprisingly limited number of sites in escort cells and fewer, and often, different sites in cap cells. These findings indicate that Lsd1 exhibits highly selective binding that depends greatly on specific cellular contexts. Lsd1 does not directly target the dpp locus in escort cells. Instead, Lsd1 regulates engrailed expression and disruption of engrailed and its putative downstream target hedgehog suppress the Lsd1 mutant phenotype. Interestingly, over-expression of engrailed, but not hedgehog, results in an expansion of GSC cells, marked by the expansion of BMP signaling. Knockdown of other potential direct Lsd1 target genes, not obviously linked to BMP signaling, also partially suppresses the Lsd1 mutant phenotype. These results suggest that Lsd1 restricts the number of GSC-like cells by regulating a diverse group of genes and provide further evidence that escort cell function must be carefully controlled during development and adulthood to ensure proper germline differentiation.


Assuntos
Diferenciação Celular/genética , Proteínas de Drosophila/genética , Oxirredutases N-Desmetilantes/genética , Transdução de Sinais/genética , Células-Tronco/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Germinativas/metabolismo , Histonas/metabolismo , Humanos , Oxirredutases N-Desmetilantes/metabolismo , Nicho de Células-Tronco/genética
8.
Proc Natl Acad Sci U S A ; 111(11): 4251-6, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591637

RESUMO

The transcription factor E-twenty-six related gene (ERG), which is overexpressed through gene fusion with the androgen-responsive gene transmembrane protease, serine 2 (TMPRSS2) in ∼40% of prostate tumors, is a key driver of prostate carcinogenesis. Ablation of ERG would disrupt a key oncogenic transcriptional circuit and could be a promising therapeutic strategy for prostate cancer treatment. Here, we show that ubiquitin-specific peptidase 9, X-linked (USP9X), a deubiquitinase enzyme, binds ERG in VCaP prostate cancer cells expressing TMPRSS2-ERG and deubiquitinates ERG in vitro. USP9X knockdown resulted in increased levels of ubiquitinated ERG and was coupled with depletion of ERG. Treatment with the USP9X inhibitor WP1130 resulted in ERG degradation both in vivo and in vitro, impaired the expression of genes enriched in ERG and prostate cancer relevant gene signatures in microarray analyses, and inhibited growth of ERG-positive tumors in three mouse xenograft models. Thus, we identified USP9X as a potential therapeutic target in prostate cancer cells and established WP1130 as a lead compound for the development of ERG-depleting drugs.


Assuntos
Endopeptidases/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias da Próstata/enzimologia , Inibidores de Proteases/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Cianoacrilatos , Células HeLa , Humanos , Masculino , Camundongos , Nitrilas/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Piridinas/farmacologia , Interferência de RNA , Fatores de Transcrição , Regulador Transcricional ERG , Ubiquitina Tiolesterase , Ubiquitinação/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 109(51): 21058-63, 2012 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-23213231

RESUMO

Poor outcomes in diabetic patients are observed across a range of human tumors, suggesting that cancer cells develop unique characteristics under diabetic conditions. Cancer cells exposed to hyperglycemic insults acquire permanent aggressive traits of tumor growth, even after a return to euglycemic conditions. Comparative genome-wide mapping of hyperglycemia-specific open chromatin regions and concomitant mRNA expression profiling revealed that the neuregulin-1 gene, encoding an established endogenous ligand for the HER3 receptor, is activated through a putative distal enhancer. Our findings highlight the targeted inhibition of NRG1-HER3 pathways as a potential target for the treatment breast cancer patients with associated diabetes.


Assuntos
Diabetes Mellitus/metabolismo , Regulação da Expressão Gênica , Neuregulina-1/metabolismo , Receptor ErbB-3/metabolismo , Animais , Neoplasias da Mama/complicações , Neoplasias da Mama/metabolismo , Células CHO , Linhagem Celular Tumoral , Proliferação de Células , Cricetinae , Epigênese Genética , Impressão Genômica , Células HEK293 , Humanos , Hiperglicemia/complicações , Hiperglicemia/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Transdução de Sinais , Células Tumorais Cultivadas
10.
Nat Cell Biol ; 9(12): 1401-12, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17994010

RESUMO

Cell division is fundamental for all organisms. Here we report a genome-scale RNA-mediated interference screen in HeLa cells designed to identify human genes that are important for cell division. We have used a library of endoribonuclease-prepared short interfering RNAs for gene silencing and have used DNA content analysis to identify genes that induced cell cycle arrest or altered ploidy on silencing. Validation and secondary assays were performed to generate a nine-parameter loss-of-function phenoprint for each of the genes. These phenotypic signatures allowed the assignment of genes to specific functional classes by combining hierarchical clustering, cross-species analysis and proteomic data mining. We highlight the richness of our dataset by ascribing novel functions to genes in mitosis and cytokinesis. In particular, we identify two evolutionarily conserved transcriptional regulatory networks that govern cytokinesis. Our work provides an experimental framework from which the systematic analysis of novel genes necessary for cell division in human cells can begin.


Assuntos
Divisão Celular/fisiologia , Genoma Humano , Interferência de RNA , Perfilação da Expressão Gênica , Células HeLa , Humanos , RNA Interferente Pequeno/metabolismo
11.
PLoS Genet ; 7(11): e1002364, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22102826

RESUMO

The regulatory logic of time- and tissue-specific gene expression has mostly been dissected in the context of the smallest DNA fragments that, when isolated, recapitulate native expression in reporter assays. It is not known if the genomic sequences surrounding such fragments, often evolutionarily conserved, have any biological function or not. Using an enhancer of the even-skipped gene of Drosophila as a model, we investigate the functional significance of the genomic sequences surrounding empirically identified enhancers. A 480 bp long "minimal stripe element" is able to drive even-skipped expression in the second of seven stripes but is embedded in a larger region of 800 bp containing evolutionarily conserved binding sites for required transcription factors. To assess the overall fitness contribution made by these binding sites in the native genomic context, we employed a gene-replacement strategy in which whole-locus transgenes, capable of rescuing even-skipped(-) lethality to adulthood, were substituted for the native gene. The molecular phenotypes were characterized by tagging Even-skipped with a fluorescent protein and monitoring gene expression dynamics in living embryos. We used recombineering to excise the sequences surrounding the minimal enhancer and site-specific transgenesis to create co-isogenic strains differing only in their stripe 2 sequences. Remarkably, the flanking sequences were dispensable for viability, proving the sufficiency of the minimal element for biological function under normal conditions. These sequences are required for robustness to genetic and environmental perturbation instead. The mutant enhancers had measurable sex- and dose-dependent effects on viability. At the molecular level, the mutants showed a destabilization of stripe placement and improper activation of downstream genes. Finally, we demonstrate through live measurements that the peripheral sequences are required for temperature compensation. These results imply that seemingly redundant regulatory sequences beyond the minimal enhancer are necessary for robust gene expression and that "robustness" itself must be an evolved characteristic of the wild-type enhancer.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Elementos Facilitadores Genéticos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais/genética , Aptidão Genética , Especificidade de Órgãos , Transgenes/genética
12.
bioRxiv ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39026771

RESUMO

In advanced castration resistant prostate cancer (CRPC), mutations in the DNA damage response (DDR) gene ataxia telangiectasia mutated ( ATM ) are common. While poly(ADP-ribose) polymerase inhibitors are approved in this context, their clinical efficacy remains limited. Thus, there is a compelling need to identify alternative therapeutic avenues for ATM mutant prostate cancer patients. Here, we generated matched ATM-proficient and ATM-deficient CRPC lines to elucidate the impact of ATM loss on DDR in response to DNA damage via irradiation. Through unbiased phosphoproteomic screening, we unveiled that ATM-deficient CRPC lines maintain dependence on downstream ATM targets through activation of ATR and DNA-PKcs kinases. Dual inhibition of ATR and DNA-PKcs effectively inhibited downstream γH2AX foci formation in response to irradiation and radiosensitized ATM-deficient lines to a greater extent than either ATM-proficient controls or single drug treatment. Further, dual inhibition abrogated residual downstream ATM pathway signaling and impaired replication fork dynamics. To circumvent potential toxicity, we leveraged the RUVBL1/2 ATPase inhibitor Compound B, which leads to the degradation of both ATR and DNA-PKcs kinases. Compound B effectively radiosensitized ATM-deficient CRPC in vitro and in vivo , and impacted replication fork dynamics. Overall, dual targeting of both ATR and DNA-PKcs is necessary to block DDR in ATM-deficient CRPC, and Compound B could be utilized as a novel therapy in combination with irradiation in these patients.

13.
EMBO J ; 28(10): 1453-65, 2009 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-19387489

RESUMO

Proliferation of mammalian cells requires the coordinated function of many proteins to accurately divide a cell into two daughter cells. Several RNAi screens have identified previously uncharacterised genes that are implicated in mammalian cell division. The molecular function for these genes needs to be investigated to place them into pathways. Phenotypic profiling is a useful method to assign putative functions to uncharacterised genes. Here, we show that the analysis of protein localisation is useful to refine a phenotypic profile. We show the utility of this approach by defining a function of the previously uncharacterised gene C13orf3 during cell division. C13orf3 localises to centrosomes, the mitotic spindle, kinetochores, spindle midzone, and the cleavage furrow during cell division and is specifically phosphorylated during mitosis. Furthermore, C13orf3 is required for centrosome integrity and anaphase onset. Depletion by RNAi leads to mitotic arrest in metaphase with an activation of the spindle assembly checkpoint and loss of sister chromatid cohesion. Proteomic analyses identify C13orf3 (Ska3) as a new component of the Ska complex and show a direct interaction with a regulatory subunit of the protein phosphatase PP2A. All together, these data identify C13orf3 as an important factor for metaphase to anaphase progression and highlight the potential of combined RNAi screening and protein localisation analyses.


Assuntos
Centrossomo/química , Citocinese , Cinetocoros/química , Proteínas Associadas aos Microtúbulos/análise , Fuso Acromático/química , Proteínas de Ciclo Celular , Inativação Gênica , Células HeLa , Humanos , Fosforilação , RNA Interferente Pequeno/genética
14.
PLoS Genet ; 6(10): e1001178, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21060808

RESUMO

The mechanistic target of rapamycin (MTOR) pathway regulates cell growth, energy homeostasis, apoptosis, and immune response. The regulatory associated protein of MTOR encoded by the RPTOR gene is a key component of this pathway. A previous survey of candidate genes found that RPTOR contains multiple SNPs with strong correlations between allele frequencies and climate variables, consistent with the action of selective pressures that vary across environments. Using data from a recent genome scan for selection signals, we honed in on a SNP (rs11868112) 26 kb upstream to the transcription start site of RPTOR that exhibits the strongest association with temperature variables. Transcription factor motif scanning and mining of recently mapped transcription factor binding sites identified a binding site for POU class 2 homeobox 1 (POU2F1) spanning the SNP and an adjacent retinoid acid receptor (RAR) binding site. Using expression quantification, chromatin immunoprecipitation (ChIP), and reporter gene assays, we demonstrate that POU2F1 and RARA do bind upstream of the RPTOR gene to regulate its expression in response to retinoids; this regulation is affected by the allele status at rs11868112 with the derived allele resulting in lower expression levels. We propose a model in which the derived allele influences thermogenesis or immune response by altering MTOR pathway activity and thereby increasing fitness in colder climates. Our results show that signatures of genetic adaptations can identify variants with functional effects, consistent with the idea that selection signals may be used for SNP annotation.


Assuntos
Adaptação Fisiológica/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Clima , Polimorfismo de Nucleotídeo Único , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alelos , Benzoatos/farmacologia , Sítios de Ligação/genética , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Regulação para Baixo/efeitos dos fármacos , Frequência do Gene , Genética Populacional , Geografia , Células Hep G2 , Humanos , Fator 1 de Transcrição de Octâmero/genética , Fator 1 de Transcrição de Octâmero/metabolismo , Ligação Proteica , Proteína Regulatória Associada a mTOR , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Retinoides/farmacologia , Temperatura , Tetra-Hidronaftalenos/farmacologia , Fatores de Tempo , Sítio de Iniciação de Transcrição
15.
Cancer Lett ; 552: 215984, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36330954

RESUMO

The neomorphic transcription factor EWS-FLI1 is a key driver of Ewing sarcoma. Ablation of EWS-FLI1 may present a promising therapeutic strategy for this malignancy. Here we found that the deubiquitinase, ubiquitin specific peptidase 9 X-linked (USP9X) stabilizes EWS-FLI1 protein expression in Ewing sarcoma. We show that USP9X binds the ETS domain of EWS-FLI1 in Ewing sarcoma cells and deubiquitinates EWS-FLI1 and that USP9X and EWS-FLI1 protein expression is correlated in clinical Ewing sarcoma specimens. We found that treatment of Ewing sarcoma cells with the USP9X inhibitor WP1130 mediates rapid EWS-FLI1 degradation in vitro and in vivo which coincides with reduced growth of Ewing sarcoma cells and tumors. Our results suggest that USP9X might be a potential therapeutic target to mediate EWS-FLI1 depletion in Ewing sarcoma.


Assuntos
Sarcoma de Ewing , Humanos , Sarcoma de Ewing/tratamento farmacológico , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia , Linhagem Celular Tumoral , Proteína EWS de Ligação a RNA/genética , Proteína EWS de Ligação a RNA/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
16.
J Clin Invest ; 133(3)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454649

RESUMO

Comprehensive cis-regulatory landscapes are essential for accurate enhancer prediction and disease variant mapping. Although cis-regulatory element (CRE) resources exist for most tissues and organs, many rare - yet functionally important - cell types remain overlooked. Despite representing only a small fraction of the heart's cellular biomass, the cardiac conduction system (CCS) unfailingly coordinates every life-sustaining heartbeat. To globally profile the mouse CCS cis-regulatory landscape, we genetically tagged CCS component-specific nuclei for comprehensive assay for transposase-accessible chromatin-sequencing (ATAC-Seq) analysis. Thus, we established a global CCS-enriched CRE database, referred to as CCS-ATAC, as a key resource for studying CCS-wide and component-specific regulatory functions. Using transcription factor (TF) motifs to construct CCS component-specific gene regulatory networks (GRNs), we identified and independently confirmed several specific TF sub-networks. Highlighting the functional importance of CCS-ATAC, we also validated numerous CCS-enriched enhancer elements and suggested gene targets based on CCS single-cell RNA-Seq data. Furthermore, we leveraged CCS-ATAC to improve annotation of existing human variants related to cardiac rhythm and nominated a potential enhancer-target pair that was dysregulated by a specific SNP. Collectively, our results established a CCS-regulatory compendium, identified novel CCS enhancer elements, and illuminated potential functional associations between human genomic variants and CCS component-specific CREs.


Assuntos
Núcleo Celular , Cromatina , Sistema de Condução Cardíaco , Contração Miocárdica , Animais , Humanos , Camundongos , Núcleo Celular/genética , Cromatina/genética , Redes Reguladoras de Genes , Contração Miocárdica/genética , Contração Miocárdica/fisiologia , Fatores de Transcrição/genética , Sistema de Condução Cardíaco/fisiologia
17.
Front Oncol ; 13: 1025443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035141

RESUMO

The glucocorticoid receptor (GR) is an important anti-cancer target in lymphoid cancers but has been understudied in solid tumors like lung cancer, although glucocorticoids are often given with chemotherapy regimens to mitigate side effects. Here, we identify a dexamethasone-GR mediated anti-cancer response in a subset of aggressive non-small cell lung cancers (NSCLCs) that harbor Serine/Threonine Kinase 11 (STK11/LKB1) mutations. High tumor expression of carbamoyl phosphate synthase 1 (CPS1) was strongly linked to the presence of LKB1 mutations, was the best predictor of NSCLC dexamethasone (DEX) sensitivity (p < 10-16) but was not mechanistically involved in DEX sensitivity. Subcutaneous, orthotopic and metastatic NSCLC xenografts, biomarker-selected, STK11/LKB1 mutant patient derived xenografts, and genetically engineered mouse models with KRAS/LKB1 mutant lung adenocarcinomas all showed marked in vivo anti-tumor responses with the glucocorticoid dexamethasone as a single agent or in combination with cisplatin. Mechanistically, GR activation triggers G1/S cell cycle arrest in LKB1 mutant NSCLCs by inducing the expression of the cyclin-dependent kinase inhibitor, CDKN1C/p57(Kip2). All findings were confirmed with functional genomic experiments including CRISPR knockouts and exogenous expression. Importantly, DEX-GR mediated cell cycle arrest did not interfere with NSCLC radiotherapy, or platinum response in vitro or with platinum response in vivo. While DEX induced LKB1 mutant NSCLCs in vitro exhibit markers of cellular senescence and demonstrate impaired migration, in vivo DEX treatment of a patient derived xenograft (PDX) STK11/LKB1 mutant model resulted in expression of apoptosis markers. These findings identify a previously unknown GR mediated therapeutic vulnerability in STK11/LKB1 mutant NSCLCs caused by induction of p57(Kip2) expression with both STK11 mutation and high expression of CPS1 as precision medicine biomarkers of this vulnerability.

18.
Clin Cancer Res ; 29(14): 2651-2667, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-36780194

RESUMO

PURPOSE: Anaplastic lymphoma kinase (ALK) aberrations have been identified in pediatric-type infant gliomas, but their occurrence across age groups, functional effects, and treatment response has not been broadly established. EXPERIMENTAL DESIGN: We performed a comprehensive analysis of ALK expression and genomic aberrations in both newly generated and retrospective data from 371 glioblastomas (156 adult, 205 infant/pediatric, and 10 congenital) with in vitro and in vivo validation of aberrations. RESULTS: ALK aberrations at the protein or genomic level were detected in 12% of gliomas (45/371) in a wide age range (0-80 years). Recurrent as well as novel ALK fusions (LRRFIP1-ALK, DCTN1-ALK, PRKD3-ALK) were present in 50% (5/10) of congenital/infant, 1.4% (3/205) of pediatric, and 1.9% (3/156) of adult GBMs. ALK fusions were present as the only candidate driver in congenital/infant GBMs and were sometimes focally amplified. In contrast, adult ALK fusions co-occurred with other oncogenic drivers. No activating ALK mutations were identified in any age group. Novel and recurrent ALK rearrangements promoted STAT3 and ERK1/2 pathways and transformation in vitro and in vivo. ALK-fused GBM cellular and mouse models were responsive to ALK inhibitors, including in patient cells derived from a congenital GBM. Relevant to the treatment of infant gliomas, we showed that ALK protein appears minimally expressed in the forebrain at perinatal stages, and no gross effects on perinatal brain development were seen in pregnant mice treated with the ALK inhibitor ceritinib. CONCLUSIONS: These findings support use of brain-penetrant ALK inhibitors in clinical trials across infant, pediatric, and adult GBMs. See related commentary by Mack and Bertrand, p. 2567.


Assuntos
Glioblastoma , Glioma , Camundongos , Animais , Quinase do Linfoma Anaplásico/genética , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Estudos Retrospectivos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Glioma/tratamento farmacológico
19.
Curr Biol ; 18(2): 136-41, 2008 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-18207742

RESUMO

Centrosomes are the major microtubule-organizing centers of mammalian cells. They are composed of a centriole pair and surrounding microtubule-nucleating material termed pericentriolar material (PCM). Bipolar mitotic spindle assembly relies on two intertwined processes: centriole duplication and centrosome maturation. In the first process, the single interphase centrosome duplicates in a tightly regulated manner so that two centrosomes are present in mitosis. In the second process, the two centrosomes increase in size and microtubule nucleation capacity through PCM recruitment, a process referred to as centrosome maturation. Failure to properly orchestrate centrosome duplication and maturation is inevitably linked to spindle defects, which can result in aneuploidy and promote cancer progression. It has been proposed that centriole assembly during duplication relies on both PCM and centriole proteins, raising the possibility that centriole duplication depends on PCM recruitment. In support of this model, C. elegans SPD-2 and mammalian NEDD-1 (GCP-WD) are key regulators of both these processes. SPD-2 protein sequence homologs have been identified in flies, mice, and humans, but their roles in centrosome biogenesis until now have remained unclear. Here, we show that Cep192, the human homolog of C. elegans and D. melanogaster SPD-2, is a major regulator of PCM recruitment, centrosome maturation, and centriole duplication in mammalian cells. We propose a model in which Cep192 and Pericentrin are mutually dependent for their localization to mitotic centrosomes during centrosome maturation. Both proteins are then required for NEDD-1 recruitment and the subsequent assembly of gamma-TuRCs and other factors into fully functional centrosomes.


Assuntos
Centrossomo/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Mitose/fisiologia , Antígenos/metabolismo , Proteínas de Caenorhabditis elegans , Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
20.
Nat Methods ; 5(5): 409-15, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18391959

RESUMO

The interpretation of genome sequences requires reliable and standardized methods to assess protein function at high throughput. Here we describe a fast and reliable pipeline to study protein function in mammalian cells based on protein tagging in bacterial artificial chromosomes (BACs). The large size of the BAC transgenes ensures the presence of most, if not all, regulatory elements and results in expression that closely matches that of the endogenous gene. We show that BAC transgenes can be rapidly and reliably generated using 96-well-format recombineering. After stable transfection of these transgenes into human tissue culture cells or mouse embryonic stem cells, the localization, protein-protein and/or protein-DNA interactions of the tagged protein are studied using generic, tag-based assays. The same high-throughput approach will be generally applicable to other model systems.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Genômica/métodos , Mamíferos/genética , Mamíferos/metabolismo , Proteínas/metabolismo , Transgenes/genética , Animais , Antibacterianos/farmacologia , Linhagem Celular , Resistência a Medicamentos , Regulação da Expressão Gênica , Biblioteca Gênica , Engenharia Genética , Genoma , Análise Serial de Proteínas , Ligação Proteica , Transporte Proteico , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA