Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Genes Cells ; 28(11): 757-763, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696504

RESUMO

The behaviors of cells, tissues, and organs are controlled by the extracellular environment in addition to their autonomous regulatory system. Dysfunction of extracellular regulatory mechanisms affects not only the development and survival of organisms but also successful reproduction. In this review article, a novel extracellular regulatory mechanism regulating the mammalian male reproductive ability will be briefly summarized. In terrestrial vertebrates, spermatozoa generated in the testis are transported through the lumen of the male reproductive tract and become functionally mature during the transport. Recent studies with gene-modified animals are unveiling the luminal extracellular environment of the reproductive tract to function not only as the pathway of sperm transport and the site of sperm maturation but also as the channel for cellular communication to regulate sperm maturation. Of special interest is the molecular mechanism of lumicrine signaling, a transluminal secreted signal transduction in the male reproductive tract lumen as a master regulator of sperm maturation and male reproductive ability. The general significance of such transluminal signaling in the context of cell biology will also be discussed.


Assuntos
Epididimo , Maturação do Esperma , Animais , Masculino , Epididimo/metabolismo , Sêmen , Testículo/metabolismo , Espermatozoides/metabolismo , Transdução de Sinais , Mamíferos
2.
Reprod Biol Endocrinol ; 22(1): 40, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600586

RESUMO

The epididymal function and gene expression in mammals are under the control of the testis. Sex steroids are secreted from the testis and act on the epididymis in an endocrine manner. There is another, non-sex steroidal secreted signaling, named lumicrine signaling, in which testis-derived secreted proteins go through the male reproductive tract and act on the epididymis. The effects of such multiple regulations on the epididymis by the testis have been investigated for many genes. The recent development of high-throughput next-generation sequencing now enables us a further comparative survey of endocrine and lumicrine action-dependent gene expression. In the present study, testis-derived endocrine and lumicrine actions on epididymal gene expression were comparatively investigated by RNA-seq transcriptomic analyses. This investigation utilized experimental animal models in which testis-derived endocrine and/or lumicrine actions were interfered with, such as unilateral or bilateral orchidectomy. By bilateral orchidectomy, which interferes with both endocrine and lumicrine actions, 431 genes were downregulated. By unilateral orchidectomy, which also interferes with endocrine and lumicrine actions by the unilateral testis, but the endocrine action was compensated by the contralateral testis, 283 genes were downregulated. The content of such genes downregulated by unilateral orchidectomy was like those of lumicrine action-interfered efferent duct-ligation, W/Wv, and Nell2-/- mice. When genes affected by unilateral and bilateral orchidectomy were compared, 154 genes were commonly downregulated, whereas 217 genes were specifically downregulated only by bilateral orchidectomy, indicating the distinction between endocrine and lumicrine actions on the proximal epididymal transcriptome. Comparative transcriptome analyses also showed that the expressions of genes emerging since Amniota were notably impacted by bilateral orchidectomy, unilateral orchidectomy, and lumicrine action-interfering treatments; the degree of influence from these treatments varied based on the evolutionary stage beyond Amniota. These findings unveil an evolutional transition of regulated gene expression in the proximal epididymis by two different testis-derived signaling mechanisms.


Assuntos
Epididimo , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Epididimo/metabolismo , Transcriptoma , Orquiectomia , Transdução de Sinais/genética , Mamíferos
3.
Reprod Biol Endocrinol ; 22(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169386

RESUMO

The maturation of spermatozoa is a regulated process, influenced by genes expressing essential secreted proteins in the proximal epididymis. Recent genetic studies in rodents have identified the non-sex steroidal molecular signals that regulate gene expression in the proximal epididymis. Germ cells in the testis secrete ligand proteins into the seminiferous tubule lumen The ligand proteins travel through the male reproductive tract lumen to the epididymis, where they bind to receptors, triggering the differentiation of the luminal epithelium for sperm maturation. It is, however, not fully unveiled if such a testis-epididymis trans-luminal signaling mechanism exists in other species, especially humans. In the present study, the rodent-type testis-epididymis trans-luminal signaling in the human male reproductive tract was evaluated in a step-by-step manner by analyzing testis and epididymis gene expression and signaling mediator protein function. There was a significant correlation between the epididymal expressions of mouse genes upregulated by the trans-luminal signaling and those of their human orthologs, as evaluated by the correlation coefficient of 0.604. The transcript expression of NELL2 and NICOL encoding putative ligand proteins was also observed in human testicular cells. In vitro experiments demonstrated that purified recombinant human NELL2 and NICOL formed a molecular complex with similar properties to rodent proteins, which was evaluated by a dissociation equilibrium constant of 110 nM. Recombinant human NELL2 also specifically bound to its putative receptor human ROS1 in vitro. Collectively, these findings suggest that the rodent-type testis-epididymis secreted signaling mechanism is also possible in the human male reproductive tract.


Assuntos
Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Humanos , Masculino , Camundongos , Animais , Ligantes , Proteínas Proto-Oncogênicas/metabolismo , Sêmen , Testículo/metabolismo , Epididimo/metabolismo , Espermatozoides/metabolismo , Proteínas do Tecido Nervoso
4.
J Reprod Dev ; 70(2): 104-114, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38346723

RESUMO

The physiological functions of the mammalian epididymis are typically regulated by the testes. In addition to sex steroids secreted by testicular Leydig cells, which act on the epididymis in an endocrine manner, there is a non-sex-steroidal signaling pathway known as the lumicrine pathway. This lumicrine signaling pathway involves ligand proteins secreted from germ cells within the testicular seminiferous tubules traversing the male reproductive tract, which induce epithelial differentiation in the epididymis. These findings prompted an inquiry into whether treatments influencing testis physiology can disrupt epididymal function by interfering with testis-epididymis communication. Busulfan, an alkylating agent commonly used to deplete testicular germ cells in reproductive biology, has not been sufficiently explored because of its effects on the epididymis. This study investigated the effects of busulfan administration on the proximal epididymis using histological and transcriptomic analyses. Notably, busulfan, as opposed to the vehicle dimethyl sulfoxide (DMSO), altered the morphology of the initial segment of the epididymis, leading to a reduction in the cell height of the luminal epithelium. RNA sequencing identified 185 significantly downregulated genes in the proximal epididymis of busulfan-administered mice compared to DMSO-administered mice. Comparative transcriptome analyses revealed similarities between the epididymal transcriptome of busulfan-administered mice and lumicrine-deficient mice, such as efferent-duct-ligated W/Wv and Nell2-/- mice. However, this differed from that of bilaterally orchidectomized mice, in which both the endocrine and lumicrine signaling pathways were simultaneously ablated. Collectively, these results suggested that the harmful effects of busulfan on the proximal epididymis are secondary consequences of the ablation of testis-epididymis lumicrine signaling.


Assuntos
Epididimo , Testículo , Camundongos , Masculino , Animais , Testículo/metabolismo , Bussulfano/metabolismo , Bussulfano/farmacologia , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Transdução de Sinais , Mamíferos
5.
Biol Reprod ; 109(4): 474-481, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37531264

RESUMO

The mammalian epididymis is the organ for functional sperm maturation. In rodents, the initial segment, the most proximal region of the epididymis, plays a critical role in sperm maturation. The luminal epithelial differentiation and the following gene expression of the initial segment are regulated by the lumicrine signaling, a testis-epididymis transluminal secreted signaling. Adhesion G protein-coupled receptor G2 (ADGRG2) is expressed in the efferent duct and the initial segment epididymis. In the preceding study, Adgrg2 ablation decreased the expression of several genes expressed in the initial segment. Such downregulated genes include those known to be regulated by lumicrine signaling, suggesting the involvement of ADGRG2 in lumicrine signaling. The present study examined whether ADGRG2 is associated with the lumicrine signaling regulating epididymal initial segment differentiation and gene expression. Adgrg2-null mice were generated by CRISPR/CAS9-mediated genome editing. The postnatal differentiation of the Adgrg2-null male epididymal initial segment was histologically comparable with that of control wild-type animals. The RNA-seq of Adgrg2-null mice was performed together with those of efferent duct-ligated and W/Wv mice in both of which lumicrine signaling is defective. The comparative transcriptome analyses clarified that the expressions of genes expressed in the initial segment and regulated by lumicrine signaling were decreased by Adgrg2 nullification. However, the extent of such downregulations observed in Adgrg2-null epididymis was not so prominent compared with those of lumicrine signaling deficient Nell2-/-, efferent duct-ligated, or W/Wv mice. Collectively, these findings indicate that ADGRG2 is dispensable for the lumicrine regulation of epididymal initial segment differentiation.


Assuntos
Epididimo , Sêmen , Masculino , Camundongos , Animais , Epididimo/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Expressão Gênica , Mamíferos
7.
Biol Reprod ; 101(2): 501-511, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201419

RESUMO

More than 1000 genes are predicted to be predominantly expressed in mouse testis, yet many of them remain unstudied in terms of their roles in spermatogenesis and sperm function and their essentiality in male reproduction. Since individually indispensable factors can provide important implications for the diagnosis of genetically related idiopathic male infertility and may serve as candidate targets for the development of nonhormonal male contraceptives, our laboratories continuously analyze the functions of testis-enriched genes in vivo by generating knockout mouse lines using the CRISPR/Cas9 system. The dispensability of genes in male reproduction is easily determined by examining the fecundity of knockout males. During our large-scale screening of essential factors, we knocked out 30 genes that have a strong bias of expression in the testis and are mostly conserved in mammalian species including human. Fertility tests reveal that the mutant males exhibited normal fecundity, suggesting these genes are individually dispensable for male reproduction. Since such functionally redundant genes are of diminished biological and clinical significance, we believe that it is crucial to disseminate this list of genes, along with their phenotypic information, to the scientific community to avoid unnecessary expenditure of time and research funds and duplication of efforts by other laboratories.


Assuntos
Sistemas CRISPR-Cas , Fertilidade/genética , Edição de Genes , Regulação da Expressão Gênica/fisiologia , Testículo/metabolismo , Animais , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Transcriptoma
8.
J Reprod Dev ; 65(3): 239-244, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30745494

RESUMO

Preeclampsia is a systemic disease caused by abnormal placentation that affects both mother and fetus. It was reported that Laeverin (LVRN, also known as Aminopeptidase Q) was up-regulated in the placenta of preeclamptic patients. However, physiological and pathological functions of LVRN remained to be unknown. Here we characterized Lvrn function during placentation in mice. RT-PCR showed that Lvrn is expressed in both fetus and placenta during embryogenesis, and several adult tissues. When we overexpressed Lvrn in a placenta-specific manner using lentiviral vectors, we did not see any defects in both placentae and fetuses. The mice carrying Lvrn overexpressing placentas did not show any preeclampsia-like symptoms such as maternal high blood pressure and fetal growth restriction. We next ablated Lvrn by CRISPR/Cas9-mediated genome editing to see physiological function. In Lvrn ablated mice, maternal blood pressure during pregnancy was not affected, and both placentas and fetuses grew normally. Collectively, these results suggest that, LVRN is irrelevant to preeclampsia and dispensable for normal placentation and embryonic development in mice.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Metaloproteases/fisiologia , Placenta/fisiologia , Placentação/fisiologia , Animais , Pressão Sanguínea , Sistemas CRISPR-Cas , Feminino , Retardo do Crescimento Fetal/metabolismo , Feto/metabolismo , Perfilação da Expressão Gênica , Lentivirus/metabolismo , Metaloproteases/genética , Camundongos , Camundongos Knockout , Placentação/genética , Pré-Eclâmpsia , Gravidez , Prenhez , Trofoblastos/metabolismo
9.
Proc Natl Acad Sci U S A ; 113(28): 7704-10, 2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27357688

RESUMO

Gene-expression analysis studies from Schultz et al. estimate that more than 2,300 genes in the mouse genome are expressed predominantly in the male germ line. As of their 2003 publication [Schultz N, Hamra FK, Garbers DL (2003) Proc Natl Acad Sci USA 100(21):12201-12206], the functions of the majority of these testis-enriched genes during spermatogenesis and fertilization were largely unknown. Since the study by Schultz et al., functional analysis of hundreds of reproductive-tract-enriched genes have been performed, but there remain many testis-enriched genes for which their relevance to reproduction remain unexplored or unreported. Historically, a gene knockout is the "gold standard" to determine whether a gene's function is essential in vivo. Although knockout mice without apparent phenotypes are rarely published, these knockout mouse lines and their phenotypic information need to be shared to prevent redundant experiments. Herein, we used bioinformatic and experimental approaches to uncover mouse testis-enriched genes that are evolutionarily conserved in humans. We then used gene-disruption approaches, including Knockout Mouse Project resources (targeting vectors and mice) and CRISPR/Cas9, to mutate and quickly analyze the fertility of these mutant mice. We discovered that 54 mutant mouse lines were fertile. Thus, despite evolutionary conservation of these genes in vertebrates and in some cases in all eukaryotes, our results indicate that these genes are not individually essential for male mouse fertility. Our phenotypic data are highly relevant in this fiscally tight funding period and postgenomic age when large numbers of genomes are being analyzed for disease association, and will prevent unnecessary expenditures and duplications of effort by others.


Assuntos
Fertilidade/genética , Testículo/metabolismo , Animais , Evolução Biológica , Sistemas CRISPR-Cas , Feminino , Fertilização , Engenharia Genética , Genômica , Masculino , Camundongos , Camundongos Knockout , Espermatogênese
10.
Biol Reprod ; 94(1): 6, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26586843

RESUMO

The X-linked Plac1 gene is maternally expressed in trophoblast cells during placentation, and its disruption causes placental hyperplasia and intrauterine growth restriction. In contrast, Plac1 is also reported to be one of the upregulated genes in the hyperplastic placenta generated by nuclear transfer. However, the effect of overexpressed Plac1 on placental formation and function remained unaddressed. We complemented the Plac1 knockout placental dysfunction by lentiviral vector-mediated, placenta-specific Plac1 transgene expression. Whereas fetal development and the morphology of maternal blood sinuses in the labyrinth zone improved, placental hyperplasia remained, with an expanded the junctional zone that migrated and encroached into the labyrinth zone. Further experiments revealed that wild-type placenta with transgenically expressed Plac1 resulted in placental hyperplasia without the encroaching of the junctional zone. Our findings suggest that Plac1 is involved in trophoblast cell proliferation, differentiation, and migration. Its proper expression is required for normal placentation and fetal development.


Assuntos
Viabilidade Fetal/genética , Lentivirus/genética , Placenta/patologia , Proteínas da Gravidez/deficiência , Proteínas da Gravidez/genética , Animais , Blastocisto/metabolismo , Proliferação de Células , Feminino , Retardo do Crescimento Fetal/genética , Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Vetores Genéticos , Hiperplasia , Camundongos , Camundongos Knockout , Técnicas de Transferência Nuclear , Gravidez , Transgenes/genética , Trofoblastos
11.
PLoS Genet ; 7(9): e1002278, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21931569

RESUMO

The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia.


Assuntos
Cromossomos Humanos Par 9/genética , Craniossinostoses/genética , Variações do Número de Cópias de DNA , Proteínas da Matriz Extracelular/genética , Receptores de Interleucina/genética , Animais , Suturas Cranianas/anormalidades , Suturas Cranianas/patologia , Citocinas/genética , Heterozigoto , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Fenótipo , Deleção de Sequência
12.
Front Cell Dev Biol ; 12: 1411162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835510

RESUMO

Since the advent of gene-targeting technology in embryonic stem cells, mice have become a primary model organism for investigating human gene function due to the striking genomic similarities between the two species. With the introduction of the CRISPR/Cas9 system for genome editing in mice, the pace of loss-of-function analysis has accelerated significantly. This has led to the identification of numerous genes that play crucial roles in male reproductive processes, including meiosis, chromatin condensation, flagellum formation in the testis, sperm maturation in the epididymis, and fertilization in the oviduct. Despite the advancements, the functions of many genes, particularly those enriched in male reproductive tissues, remain largely unknown. In our study, we focused on 15 genes and generated 13 gene-deficient mice [4933411K16Rik, Adam triple (Adam20, Adam25, and Adam39), BC048671, Cfap68, Gm4846, Gm4984, Gm13570, Nt5c1b, Ppp1r42, Saxo4, Sh3d21, Spz1, and Tektl1] to elucidate their roles in male fertility. Surprisingly, all 13 gene-deficient mice exhibited normal fertility in natural breeding experiments, indicating that these genes are not essential for male fertility. These findings have important implications as they may help prevent other research laboratories from duplicating efforts to generate knockout mice for genes that do not demonstrate an apparent phenotype related to male fertility. By shedding light on the dispensability of these genes, our study contributes to a more efficient allocation of research resources in the exploration of male reproductive biology.

13.
J Biol Chem ; 287(30): 25615-30, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22654117

RESUMO

A variety of proteins, including tenascin-C and osteopontin, have been identified as ligands for integrin α9ß1. However, their affinities for integrin α9ß1 are apparently much lower than those of other integrins (e.g. α3ß1, α5ß1, and α8ß1) for their specific ligands, leaving the possibility that physiological ligands for integrin α9ß1 still remain unidentified. In this study, we found that polydom (also named SVEP1) mediates cell adhesion in an integrin α9ß1-dependent manner and binds directly to recombinant integrin α9ß1 with an affinity that far exceeds those of the known ligands. Using a series of recombinant polydom proteins with N-terminal deletions, we mapped the integrin-binding site to the 21st complement control protein domain. Alanine-scanning mutagenesis revealed that the EDDMMEVPY sequence (amino acids 2636-2644) in the 21st complement control protein domain was involved in the binding to integrin α9ß1 and that Glu(2641) was the critical acidic residue for the integrin binding. The importance of this sequence was further confirmed by integrin binding inhibition assays using synthetic peptides. Immunohistochemical analyses of mouse embryonic tissues showed that polydom colocalized with integrin α9 in the stomach, intestine, and other organs. Furthermore, in situ integrin α9ß1 binding assays using frozen mouse tissues showed that polydom accounts for most, but not all, of the integrin α9ß1 ligands in tissues. Taken together, the present findings indicate that polydom is a hitherto unknown ligand for integrin α9ß1 that functions as a physiological ligand in vivo.


Assuntos
Moléculas de Adesão Celular/metabolismo , Integrinas/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Humanos , Integrinas/genética , Ligantes , Camundongos , Mutagênese , Especificidade de Órgãos/fisiologia , Proteínas/genética , Deleção de Sequência
14.
PLoS Genet ; 6(4): e1000907, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20419147

RESUMO

Using forward genetics, we have identified the genes mutated in two classes of zebrafish fin mutants. The mutants of the first class are characterized by defects in embryonic fin morphogenesis, which are due to mutations in a Laminin subunit or an Integrin alpha receptor, respectively. The mutants of the second class display characteristic blistering underneath the basement membrane of the fin epidermis. Three of them are due to mutations in zebrafish orthologues of FRAS1, FREM1, or FREM2, large basement membrane protein encoding genes that are mutated in mouse bleb mutants and in human patients suffering from Fraser Syndrome, a rare congenital condition characterized by syndactyly and cryptophthalmos. Fin blistering in a fourth group of zebrafish mutants is caused by mutations in Hemicentin1 (Hmcn1), another large extracellular matrix protein the function of which in vertebrates was hitherto unknown. Our mutant and dose-dependent interaction data suggest a potential involvement of Hmcn1 in Fraser complex-dependent basement membrane anchorage. Furthermore, we present biochemical and genetic data suggesting a role for the proprotein convertase FurinA in zebrafish fin development and cell surface shedding of Fras1 and Frem2, thereby allowing proper localization of the proteins within the basement membrane of forming fins. Finally, we identify the extracellular matrix protein Fibrillin2 as an indispensable interaction partner of Hmcn1. Thus we have defined a series of zebrafish mutants modelling Fraser Syndrome and have identified several implicated novel genes that might help to further elucidate the mechanisms of basement membrane anchorage and of the disease's aetiology. In addition, the novel genes might prove helpful to unravel the molecular nature of thus far unresolved cases of the human disease.


Assuntos
Embrião não Mamífero/metabolismo , Proteínas da Matriz Extracelular/genética , Síndrome de Frasier/genética , Furina/genética , Mutação , Pró-Proteína Convertases/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas da Matriz Extracelular/metabolismo , Furina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Dados de Sequência Molecular , Pró-Proteína Convertases/metabolismo , Proteínas de Peixe-Zebra/metabolismo
15.
Andrology ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084666

RESUMO

BACKGROUND: Mammalian fertilization is mediated by multiple sperm acrosomal proteins, many of which are testis-enriched transmembrane glycoproteins expressed during spermiogenesis (e.g., Izumo sperm-egg fusion 1, Sperm acrosome associated 6, and Transmembrane protein 95). METHODS: We hypothesized that proteins with these features might have a role in sperm-egg interaction and thus carried out an in-silico screen based on multiple public databases. We generated knockout mouse lines lacking seven candidate proteins by the CRISPR/Cas9 system and conducted detailed analyses on the fecundity of the knockout males, as well as their testis appearance and weight, testis and epididymis histology, and sperm motility and morphology. RESULTS: Through the in-silico screen, we identified 4932438H23Rik, A disintegrin and metalloproteinase domain-containing protein 29, SAYSvFN domain-containing protein 1, Sel-1 suppressor of lin-12-like 2 (C. elegans), Testis-expressed protein 2, Transmembrane and immunoglobulin domain-containing 3, and Zinc and ring finger 4. Phenotypic analyses unveiled that the knockout males showed normal testis gross appearance, normal testis and epididymis histology, and normal sperm morphology and motility. Fertility tests further indicated that the knockout male mice could sire pups with normal litter sizes when paired with wild-type females. DISCUSSION AND CONCLUSION: These findings suggest that these seven proteins are individually dispensable for male reproduction and fertilization. Future studies are warranted to devise advanced in-silico screening approaches that permit effective identification of gamete fusion-required sperm proteins.

16.
Nat Commun ; 14(1): 2354, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095084

RESUMO

The mammalian spermatozoa produced in the testis require functional maturation in the epididymis for their full competence. Epididymal sperm maturation is regulated by lumicrine signalling pathways in which testis-derived secreted signals relocate to the epididymis lumen and promote functional differentiation. However, the detailed mechanisms of lumicrine regulation are unclear. Herein, we demonstrate that a small secreted protein, NELL2-interacting cofactor for lumicrine signalling (NICOL), plays a crucial role in lumicrine signalling in mice. NICOL is expressed in male reproductive organs, including the testis, and forms a complex with the testis-secreted protein NELL2, which is transported transluminally from the testis to the epididymis. Males lacking Nicol are sterile due to impaired NELL2-mediated lumicrine signalling, leading to defective epididymal differentiation and deficient sperm maturation but can be restored by NICOL expression in testicular germ cells. Our results demonstrate how lumicrine signalling regulates epididymal function for successful sperm maturation and male fertility.


Assuntos
Sêmen , Maturação do Esperma , Masculino , Camundongos , Animais , Testículo/metabolismo , Epididimo/metabolismo , Espermatozoides/metabolismo , Fertilidade , Mamíferos
17.
J Biochem ; 172(6): 341-346, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36071564

RESUMO

In terrestrial vertebrates, spermatozoa generated in the testis are transported through the reproductive tract toward outside the body. In addition to as the pathway of sperm transport, the male reproductive tract also functions as the site of post-testicular sperm maturation and the epididymis, which constitutes the majority of male reproductive tract, and plays central roles in such a sperm maturation. Recent studies with gene-modified animals have been unveiling not only the molecular mechanisms of sperm maturation in the epididymis but also the regulatory system by which the epididymis acquires and executes sperm-maturing functions. In this review, the mechanisms of mammalian sperm maturation will be summarized, based on recent findings, including the lumicrine regulation of sperm maturation.


Assuntos
Proteínas Tirosina Quinases , Maturação do Esperma , Animais , Masculino , Maturação do Esperma/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sêmen , Epididimo/metabolismo , Testículo/metabolismo , Mamíferos
18.
Front Endocrinol (Lausanne) ; 13: 876370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600599

RESUMO

The physiological roles of proteolysis are not limited to degrading unnecessary proteins. Proteolysis plays pivotal roles in various biological processes through cleaving peptide bonds to activate and inactivate proteins including enzymes, transcription factors, and receptors. As a wide range of cellular processes is regulated by proteolysis, abnormalities or dysregulation of such proteolytic processes therefore often cause diseases. Recent genetic studies have clarified the inclusion of proteases and protease inhibitors in various reproductive processes such as development of gonads, generation and activation of gametes, and physical interaction between gametes in various species including yeast, animals, and plants. Such studies not only clarify proteolysis-related factors but the biological processes regulated by proteolysis for successful reproduction. Here the physiological roles of proteases and proteolysis in reproduction will be reviewed based on findings using gene-modified organisms.


Assuntos
Peptídeo Hidrolases , Reprodução , Animais , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteólise , Reprodução/genética
19.
Biochem Biophys Res Commun ; 411(2): 440-4, 2011 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-21756877

RESUMO

Fused pulmonary lobes (fpl) is a mutant gene that is inherited in an autosomal recessive manner and causes various developmental defects, including fusion of pulmonary lobes, and eyelid and digit anomalies in rats. Since these developmental defects closely resemble those observed in patients with Fraser syndrome, a recessive multiorgan disorder, and its model animals, we investigated whether the abnormal phenotypes observed in fpl/fpl mutant rats are attributable to a genetic disorder similar to Fraser syndrome. At the epidermal basement membrane in fpl/fpl mutant neonates, the expression of QBRICK, a basement membrane protein whose expression is attenuated in Fraser syndrome model mice, was greatly diminished compared with control littermates. Quantitative RT-PCR analyses of Fraser syndrome-related genes revealed that Frem2 transcripts were markedly diminished in QBRICK-negative embryos. Genomic DNA sequencing of the fpl/fpl mutant identified a nonsense mutation that introduced a stop codon at serine 2005 in Frem2. These findings indicate that the fpl mutant is a rat model of human Fraser syndrome.


Assuntos
Modelos Animais de Doenças , Síndrome de Fraser/genética , Ratos , Animais , Códon sem Sentido , Feminino , Humanos , Masculino , Transcrição Gênica
20.
Proc Natl Acad Sci U S A ; 105(35): 12849-54, 2008 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-18757743

RESUMO

Extracellular matrix (ECM), which provides critical scaffolds for all adhesive cells, regulates proliferation, differentiation, and apoptosis. Different cell types employ customized ECMs, which are thought to play important roles in the generation of so-called niches that contribute to cell-specific functions. The molecular entities of these customized ECMs, however, have not been elucidated. Here, we describe a strategy for transcriptome-wide identification of ECM proteins based on computational screening of >60,000 full-length mouse cDNAs for secreted proteins, followed by in vitro functional assays. These assays screened the candidate proteins for ECM-assembling activities, interactions with other ECM molecules, modifications with glycosaminoglycans, and cell-adhesive activities, and were then complemented with immunohistochemical analysis. We identified 16 ECM proteins, of which seven were localized in basement membrane (BM) zones. The identification of these previously unknown BM proteins allowed us to construct a body map of BM proteins, which represents the comprehensive immunohistochemistry-based expression profiles of the tissue-specific customization of BMs.


Assuntos
Proteínas da Matriz Extracelular/análise , Perfilação da Expressão Gênica , Animais , Membrana Basal/citologia , Membrana Basal/metabolismo , Linhagem Celular , Biologia Computacional , Epitélio/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos ICR , Transporte Proteico , Dente/citologia , Dente/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA