Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 64(15): 5756-5761, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39029090

RESUMO

Since the rise of generative AI models, many goal-directed molecule generators have been proposed as tools for discovering novel drug candidates. However, molecule generators often produce highly similar molecules and tend to overemphasize conformity to an imperfect scoring function rather than capturing the true underlying properties sought. We rectify these two shortcomings by offering diversity-based evaluations using the #Circles metric and considering constraints on scoring function calls or computation time. Our findings highlight the superior performance of SMILES-based autoregressive models in generating diverse sets of desired molecules compared to graph-based models or genetic algorithms.


Assuntos
Desenho de Fármacos , Algoritmos , Inteligência Artificial , Objetivos
2.
J Chem Inf Model ; 64(7): 2539-2553, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38185877

RESUMO

A central problem in drug discovery is to identify the interactions between drug-like compounds and protein targets. Over the past few decades, various quantitative structure-activity relationship (QSAR) and proteo-chemometric (PCM) approaches have been developed to model and predict these interactions. While QSAR approaches solely utilize representations of the drug compound, PCM methods incorporate both representations of the protein target and the drug compound, enabling them to achieve above-chance predictive accuracy on previously unseen protein targets. Both QSAR and PCM approaches have recently been improved by machine learning and deep neural networks, that allow the development of drug-target interaction prediction models from measurement data. However, deep neural networks typically require large amounts of training data and cannot robustly adapt to new tasks, such as predicting interaction for unseen protein targets at inference time. In this work, we propose to use HyperNetworks to efficiently transfer information between tasks during inference and thus to accurately predict drug-target interactions on unseen protein targets. Our HyperPCM method reaches state-of-the-art performance compared to previous methods on multiple well-known benchmarks, including Davis, DUD-E, and a ChEMBL derived data set, and particularly excels at zero-shot inference involving unseen protein targets. Our method, as well as reproducible data preparation, is available at https://github.com/ml-jku/hyper-dti.


Assuntos
Aprendizado de Máquina , Redes Neurais de Computação , Proteínas , Desenvolvimento de Medicamentos , Descoberta de Drogas
3.
J Chem Inf Model ; 62(9): 2111-2120, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35034452

RESUMO

Finding synthesis routes for molecules of interest is essential in the discovery of new drugs and materials. To find such routes, computer-assisted synthesis planning (CASP) methods are employed, which rely on a single-step model of chemical reactivity. In this study, we introduce a template-based single-step retrosynthesis model based on Modern Hopfield Networks, which learn an encoding of both molecules and reaction templates in order to predict the relevance of templates for a given molecule. The template representation allows generalization across different reactions and significantly improves the performance of template relevance prediction, especially for templates with few or zero training examples. With inference speed up to orders of magnitude faster than baseline methods, we improve or match the state-of-the-art performance for top-k exact match accuracy for k ≥ 3 in the retrosynthesis benchmark USPTO-50k. Code to reproduce the results is available at github.com/ml-jku/mhn-react.

4.
J Med Syst ; 46(5): 23, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35348909

RESUMO

Many previous studies claim to have developed machine learning models that diagnose COVID-19 from blood tests. However, we hypothesize that changes in the underlying distribution of the data, so called domain shifts, affect the predictive performance and reliability and are a reason for the failure of such machine learning models in clinical application. Domain shifts can be caused, e.g., by changes in the disease prevalence (spreading or tested population), by refined RT-PCR testing procedures (way of taking samples, laboratory procedures), or by virus mutations. Therefore, machine learning models for diagnosing COVID-19 or other diseases may not be reliable and degrade in performance over time. We investigate whether domain shifts are present in COVID-19 datasets and how they affect machine learning methods. We further set out to estimate the mortality risk based on routinely acquired blood tests in a hospital setting throughout pandemics and under domain shifts. We reveal domain shifts by evaluating the models on a large-scale dataset with different assessment strategies, such as temporal validation. We present the novel finding that domain shifts strongly affect machine learning models for COVID-19 diagnosis and deteriorate their predictive performance and credibility. Therefore, frequent re-training and re-assessment are indispensable for robust models enabling clinical utility.


Assuntos
COVID-19 , COVID-19/diagnóstico , Teste para COVID-19 , Testes Hematológicos , Humanos , Aprendizado de Máquina , Reprodutibilidade dos Testes
5.
J Lipid Res ; 60(11): 1922-1934, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530576

RESUMO

During pregnancy, extravillous trophoblasts (EVTs) invade the maternal decidua and remodel the local vasculature to establish blood supply for the growing fetus. Compromised EVT function has been linked to aberrant pregnancy associated with maternal and fetal morbidity and mortality. However, metabolic features of this invasive trophoblast subtype are largely unknown. Using primary human trophoblasts isolated from first trimester placental tissues, we show that cellular cholesterol homeostasis is differentially regulated in EVTs compared with villous cytotrophoblasts. Utilizing RNA-sequencing, gene set-enrichment analysis, and functional validation, we provide evidence that EVTs display increased levels of free and esterified cholesterol. Accordingly, EVTs are characterized by increased expression of the HDL-receptor, scavenger receptor class B type I, and reduced expression of the LXR and its target genes. We further reveal that EVTs express elevated levels of hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1) (a rate-limiting enzyme in progesterone synthesis) and are capable of secreting progesterone. Increasing cholesterol export by LXR activation reduced progesterone secretion in an ABCA1-dependent manner. Importantly, HSD3B1 expression was decreased in EVTs of idiopathic recurrent spontaneous abortions, pointing toward compromised progesterone metabolism in EVTs of early miscarriages. Here, we provide insights into the regulation of cholesterol and progesterone metabolism in trophoblastic subtypes and its putative relevance in human miscarriage.


Assuntos
Aborto Habitual/metabolismo , Colesterol/metabolismo , Progesterona/metabolismo , Trofoblastos/metabolismo , Biologia Computacional , Feminino , Homeostase , Humanos , Gravidez , Análise de Sequência de RNA
6.
Bioinformatics ; 34(9): 1538-1546, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29253077

RESUMO

Motivation: While drug combination therapies are a well-established concept in cancer treatment, identifying novel synergistic combinations is challenging due to the size of combinatorial space. However, computational approaches have emerged as a time- and cost-efficient way to prioritize combinations to test, based on recently available large-scale combination screening data. Recently, Deep Learning has had an impact in many research areas by achieving new state-of-the-art model performance. However, Deep Learning has not yet been applied to drug synergy prediction, which is the approach we present here, termed DeepSynergy. DeepSynergy uses chemical and genomic information as input information, a normalization strategy to account for input data heterogeneity, and conical layers to model drug synergies. Results: DeepSynergy was compared to other machine learning methods such as Gradient Boosting Machines, Random Forests, Support Vector Machines and Elastic Nets on the largest publicly available synergy dataset with respect to mean squared error. DeepSynergy significantly outperformed the other methods with an improvement of 7.2% over the second best method at the prediction of novel drug combinations within the space of explored drugs and cell lines. At this task, the mean Pearson correlation coefficient between the measured and the predicted values of DeepSynergy was 0.73. Applying DeepSynergy for classification of these novel drug combinations resulted in a high predictive performance of an AUC of 0.90. Furthermore, we found that all compared methods exhibit low predictive performance when extrapolating to unexplored drugs or cell lines, which we suggest is due to limitations in the size and diversity of the dataset. We envision that DeepSynergy could be a valuable tool for selecting novel synergistic drug combinations. Availability and implementation: DeepSynergy is available via www.bioinf.jku.at/software/DeepSynergy. Contact: klambauer@bioinf.jku.at. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biologia Computacional/métodos , Aprendizado Profundo , Perfilação da Expressão Gênica/métodos , Neoplasias/tratamento farmacológico , Software , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/genética , Máquina de Vetores de Suporte
7.
J Chem Inf Model ; 59(3): 1163-1171, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30840449

RESUMO

Predicting the outcome of biological assays based on high-throughput imaging data is a highly promising task in drug discovery since it can tremendously increase hit rates and suggest novel chemical scaffolds. However, end-to-end learning with convolutional neural networks (CNNs) has not been assessed for the task biological assay prediction despite the success of these networks at visual recognition. We compared several CNNs trained directly on high-throughput imaging data to a) CNNs trained on cell-centric crops and to b) the current state-of-the-art: fully connected networks trained on precalculated morphological cell features. The comparison was performed on the Cell Painting data set, the largest publicly available data set of microscopic images of cells with approximately 30,000 compound treatments. We found that CNNs perform significantly better at predicting the outcome of assays than fully connected networks operating on precomputed morphological features of cells. Surprisingly, the best performing method could predict 32% of the 209 biological assays at high predictive performance (AUC > 0.9) indicating that the cell morphology changes contain a large amount of information about compound activities. Our results suggest that many biological assays could be replaced by high-throughput imaging together with convolutional neural networks and that the costly cell segmentation and feature extraction step can be replaced by convolutional neural networks.


Assuntos
Bioensaio , Biologia Computacional/métodos , Microscopia , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador
8.
J Chem Inf Model ; 59(3): 962-972, 2019 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-30408959

RESUMO

The volume of high throughput screening data has considerably increased since the beginning of the automated biochemical and cell-based assays era. This information-rich data source provides tremendous repurposing opportunities for data mining. It was recently shown that biochemical or cell-based assay results can be compiled into so-called high-throughput fingerprints (HTSFPs) as a new type of descriptor describing molecular bioactivity profiles which can be applied in virtual screening, iterative screening, and target deconvolution. However, so far, studies around HTSFPs and machine learning have mainly focused on predicting the outcome of molecules in single high-throughput assays, and no one has reported the modeling of compounds' biochemical assay activities toward a panel of target proteins. In this article, we aim at comparing how our in-house HTSFPs perform at this when combined with multitask deep learning versus the single task support vector machine method both in terms of hit identification and of scaffold hopping potential. Performances obtained from the two HTSFP models were reported with respect to the performances of multitask deep learning and support vector machine models built with the structural descriptors ECFP. Moreover, we investigated the effect of high throughput screening false positives and negatives on the performance of the generated models. Our results showed that the two fingerprints yielded in similar performances and diverse hits with very little overlap, thus demonstrating the orthogonality of bioactivity profile-based descriptors with structural descriptors. Therefore, modeling compound activity data using ECFPs together with HTSFPs increases the scaffold hopping potential of the predictive models.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Aprendizado de Máquina , Redes Neurais de Computação
9.
Drug Discov Today Technol ; 32-33: 55-63, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33386095

RESUMO

There has been a wave of generative models for molecules triggered by advances in the field of Deep Learning. These generative models are often used to optimize chemical compounds towards particular properties or a desired biological activity. The evaluation of generative models remains challenging and suggested performance metrics or scoring functions often do not cover all relevant aspects of drug design projects. In this work, we highlight some unintended failure modes in molecular generation and optimization and how these evade detection by current performance metrics.


Assuntos
Descoberta de Drogas , Modelos Moleculares , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA