Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Chemistry ; 26(41): 8969-8975, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32315100

RESUMO

Fragment-based drug discovery is now widely adopted for lead generation in the pharmaceutical industry. However, fragment screening collections are often predominantly populated with flat, 2D molecules. Herein, we describe a workflow for the design and synthesis of 56 3D disubstituted pyrrolidine and piperidine fragments that occupy under-represented areas of fragment space (as demonstrated by a principal moments of inertia (PMI) analysis). A key, and unique, underpinning design feature of this fragment collection is that assessment of fragment shape and conformational diversity (by considering conformations up to 1.5 kcal mol-1 above the energy of the global minimum energy conformer) is carried out prior to synthesis and is also used to select targets for synthesis. The 3D fragments were designed to contain suitable synthetic handles for future fragment elaboration. Finally, by comparing our 3D fragments with six commercial libraries, it is clear that our collection has high three-dimensionality and shape diversity.

2.
Bioorg Med Chem Lett ; 30(7): 126987, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32029324

RESUMO

Pyrrolobenzodiazepines (PBDs) and their dimers (bis-PBDs) have emerged as some of the most potent chemotherapeutic compounds and are currently under development as novel payloads in antibody-drug conjugates (ADCs). However, when used as stand-alone therapeutics or as warheads for small molecule drug conjugates (SMDCs), dose-limiting toxicities are often observed. As an elegant solution to this inherent problem, we designed and synthesized a diazepine-ring-opened bis-PBD prodrug (pro-PBD-PBD) folate conjugate lacking the one of the two imine moieties found in the corresponding free bis-PBD. Upon entering a targeted cell, cleavage of the linker system, including the hydrolysis of an oxazolidine moiety, results in the formation of a reactive intermediate which possesses a newly formed aldehyde as well as an aromatic amine. A fast and spontaneous intramolecular ring-closing reaction subsequently takes place as the aromatic amine adds to the aldehyde with the loss of water to give the imine, and as a result, the diazepine ring, thereby delivering the bis-PBD to the targeted cell. The in vitro and in vivo activity of this conjugate has been evaluated on folate receptor positive KB cells. Sub-nanomolar activity with good specificity and high cure rates with minimal toxicity have been observed.


Assuntos
Antibióticos Antineoplásicos/uso terapêutico , Benzodiazepinas/uso terapêutico , Receptores de Folato com Âncoras de GPI/metabolismo , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Pirróis/uso terapêutico , Animais , Antibióticos Antineoplásicos/síntese química , Antibióticos Antineoplásicos/farmacologia , Benzodiazepinas/síntese química , Benzodiazepinas/farmacologia , Desenho de Fármacos , Feminino , Células HeLa , Humanos , Camundongos Nus , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Pirróis/síntese química , Pirróis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Drug Discov Today Technol ; 38: 77-90, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34895643

RESUMO

Fragment-based drug discovery (FBDD) has grown into a well-established approach in the pursuit of new therapeutics. Key to the success of FBDD is the low molecular complexity of the initial hits and this has resulted in fragment libraries that mainly contain compounds with a two-dimensional (2D) shape. In an effort to increase the chemical diversity and explore the impact of increased molecular complexity on the hit rate of fragment library screening, several academic and industrial groups have designed and synthesised novel fragments with a three-dimensional (3D) shape. This review provides an overview of 25 synthetic 3D fragment libraries from the recent literature. We calculate and compare physicochemical properties and descriptors that are typically used to measure molecular three-dimensionality such as fraction sp3 (Fsp3), plane of best fit (PBF) scores and principal moment of inertia (PMI) plots. Although the libraries vary widely in structure and properties, some key common features can be identified which may have utility in designing the next generation of 3D fragment libraries.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas
4.
Bioconjug Chem ; 28(12): 2921-2931, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29211454

RESUMO

Pyrrolobenzodiazepines (PBDs) and their dimers (bis-PBDs) have emerged as some of the most potent chemotherapeutic compounds, and are currently under development as novel payloads in antibody-drug conjugates (ADCs). However, when used as stand-alone therapeutics or as warheads for small molecule drug conjugates (SMDCs), dose-limiting toxicities are often observed. As an elegant solution to this inherent problem, we designed diazepine-ring-opened conjugated prodrugs lacking the imine moiety. Once the prodrug (pro-PBD) conjugate enters a targeted cell, cleavage of the linker system triggers the generation of a reactive intermediate possessing an aldehyde and aromatic amine. An intramolecular ring-closing reaction subsequently takes place as the aromatic amine adds to the aldehyde with the loss of water to give the imine and, as a result, the diazepine ring. In our pro-PBDs, we mask the aldehyde as a hydrolytically sensitive oxazolidine moiety which in turn is a part of a reductively labile self-immolative linker system. To prove the range of applications for this new class of latent DNA-alkylators, we designed and synthesized several novel latent warheads: pro-PBD dimers and hybrids of pro-PBD with other sequence-selective DNA minor groove binders. Preliminary preclinical pharmacology studies showed excellent biological activity and specificity.


Assuntos
Benzodiazepinas/química , Benzodiazepinas/metabolismo , Desenho de Fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Pirróis/química , Pirróis/metabolismo , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico , Técnicas de Química Sintética , Humanos , Células KB , Neoplasias/patologia , Pró-Fármacos/química , Pirróis/farmacologia , Pirróis/uso terapêutico
5.
SLAS Discov ; 29(1): 40-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37714432

RESUMO

Surface plasmon resonance (SPR) biosensor methods are ideally suited for fragment-based lead discovery.  However, generally applicable experimental procedures and detailed protocols are lacking, especially for structurally or physico-chemically challenging targets or when tool compounds are not available. Success depends on accounting for the features of both the target and the chemical library, purposely designing screening experiments for identification and validation of hits with desired specificity and mode-of-action, and availability of orthogonal methods capable of confirming fragment hits. The range of targets and libraries amenable to an SPR biosensor-based approach for identifying hits is considerably expanded by adopting multiplexed strategies, using multiple complementary surfaces or experimental conditions. Here we illustrate principles and multiplexed approaches for using flow-based SPR biosensor systems for screening fragment libraries of different sizes (90 and 1056 compounds) against a selection of challenging targets. It shows strategies for the identification of fragments interacting with 1) large and structurally dynamic targets, represented by acetyl choline binding protein (AChBP), a Cys-loop receptor ligand gated ion channel homologue, 2) targets in multi protein complexes, represented by lysine demethylase 1 and a corepressor (LSD1/CoREST), 3) structurally variable or unstable targets, represented by farnesyl pyrophosphate synthase (FPPS), 4) targets containing intrinsically disordered regions, represented by protein tyrosine phosphatase 1B  (PTP1B), and 5) aggregation-prone proteins, represented by an engineered form of human tau  (tau K18M). Practical considerations and procedures accounting for the characteristics of the proteins and libraries, and that increase robustness, sensitivity, throughput and versatility are highlighted. The study shows that the challenges for addressing these types of targets is not identification of potentially useful fragments per se, but establishing methods for their validation and evolution into leads.


Assuntos
Técnicas Biossensoriais , Ressonância de Plasmônio de Superfície , Humanos , Ressonância de Plasmônio de Superfície/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas , Proteínas de Transporte
6.
Drug Discov Today ; 27(9): 2484-2496, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35636722

RESUMO

In fragment-based drug discovery (FBDD), there is a developing appreciation that 3D fragments could offer opportunities that are not provided by 2D fragments. This review provides an overview of the synthetic strategies that have been used to prepare 3D fragments, as discussed in 25 papers published from 2011 to mid-May 2020. Three distinct strategies are highlighted: (i) diversity-oriented synthesis; (ii) the synthesis and diversification of scaffolds; and (iii) computational design and synthesis (where 3D fragments were computationally enumerated and filtered on the basis of computationally generated 3D shape descriptors and other properties). We conclude that a workflow that combines computational design and one other strategy, together with a consideration of fragment properties, 3D shape and 'fragment sociability', could allow 3D fragments to feature more widely in fragment libraries and could facilitate fragment-to-lead optimisation.


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , Desenho de Fármacos
7.
ChemMedChem ; 17(9): e202200113, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35277937

RESUMO

Fragment-based drug discovery (FBDD) has a growing need for unique screening libraries. The cyclobutane moiety was identified as an underrepresented yet attractive three-dimensional (3D) scaffold. Synthetic strategies were developed via a key 3-azido-cyclobutanone intermediate, giving potential access to a range of functional groups with accessible growth vectors. A focused set of 33 novel 3D cyclobutane fragments was synthesised, comprising three functionalities: secondary amines, amides, and sulfonamides. This library was designed using Principal Component Analysis (PCA) and an expanded version of the rule of three (RO3), followed by Principal Moment of Inertia (PMI) analysis to achieve both chemical diversity and high 3D character. Cis and trans ring isomers of library members were generated to maximise the shape diversity obtained, while limiting molecular complexity through avoiding enantiomers. Property analyses of the cyclobutane library indicated that it fares favourably against existing synthetic 3D fragment libraries in terms of shape and physicochemical properties.


Assuntos
Ciclobutanos , Bibliotecas de Moléculas Pequenas , Desenho de Fármacos , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
8.
Nat Commun ; 11(1): 5047, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028810

RESUMO

COVID-19, caused by SARS-CoV-2, lacks effective therapeutics. Additionally, no antiviral drugs or vaccines were developed against the closely related coronavirus, SARS-CoV-1 or MERS-CoV, despite previous zoonotic outbreaks. To identify starting points for such therapeutics, we performed a large-scale screen of electrophile and non-covalent fragments through a combined mass spectrometry and X-ray approach against the SARS-CoV-2 main protease, one of two cysteine viral proteases essential for viral replication. Our crystallographic screen identified 71 hits that span the entire active site, as well as 3 hits at the dimer interface. These structures reveal routes to rapidly develop more potent inhibitors through merging of covalent and non-covalent fragment hits; one series of low-reactivity, tractable covalent fragments were progressed to discover improved binders. These combined hits offer unprecedented structural and reactivity information for on-going structure-based drug design against SARS-CoV-2 main protease.


Assuntos
Betacoronavirus/química , Cisteína Endopeptidases/química , Fragmentos de Peptídeos/química , Proteínas não Estruturais Virais/química , Betacoronavirus/enzimologia , Sítios de Ligação , Domínio Catalítico , Proteases 3C de Coronavírus , Cristalografia por Raios X , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Espectrometria de Massas , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , SARS-CoV-2 , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Eletricidade Estática , Proteínas não Estruturais Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA