Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
PLoS Pathog ; 20(6): e1012301, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913753

RESUMO

Salmonella enterica Serovar Typhimurium (Salmonella) and its bacteriophage P22 are a model system for the study of horizontal gene transfer by generalized transduction. Typically, the P22 DNA packaging machinery initiates packaging when a short sequence of DNA, known as the pac site, is recognized on the P22 genome. However, sequences similar to the pac site in the host genome, called pseudo-pac sites, lead to erroneous packaging and subsequent generalized transduction of Salmonella DNA. While the general genomic locations of the Salmonella pseudo-pac sites are known, the sequences themselves have not been determined. We used visualization of P22 sequencing reads mapped to host Salmonella genomes to define regions of generalized transduction initiation and the likely locations of pseudo-pac sites. We searched each genome region for the sequence with the highest similarity to the P22 pac site and aligned the resulting sequences. We built a regular expression (sequence match pattern) from the alignment and used it to search the genomes of two P22-susceptible Salmonella strains-LT2 and 14028S-for sequence matches. The final regular expression successfully identified pseudo-pac sites in both LT2 and 14028S that correspond with generalized transduction initiation sites in mapped read coverages. The pseudo-pac site sequences identified in this study can be used to predict locations of generalized transduction in other P22-susceptible hosts or to initiate generalized transduction at specific locations in P22-susceptible hosts with genetic engineering. Furthermore, the bioinformatics approach used to identify the Salmonella pseudo-pac sites in this study could be applied to other phage-host systems.


Assuntos
Bacteriófago P22 , Salmonella typhimurium , Bacteriófago P22/genética , Salmonella typhimurium/virologia , Salmonella typhimurium/genética , Transdução Genética , Transferência Genética Horizontal , Genoma Bacteriano , Empacotamento do DNA
2.
Annu Rev Microbiol ; 75: 695-718, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351792

RESUMO

Possibly the last discovery of a previously unknown major ecosystem on Earth was made just over half a century ago, when researchers found teaming communities of animals flourishing two and a half kilometers below the ocean surface at hydrothermal vents. We now know that these highly productive ecosystems are based on nutritional symbioses between chemosynthetic bacteria and eukaryotes and that these chemosymbioses are ubiquitous in both deep-sea and shallow-water environments. The symbionts are primary producers that gain energy from the oxidation of reduced compounds, such as sulfide and methane, to fix carbon dioxide or methane into biomass to feed their hosts. This review outlines how the symbiotic partners have adapted to living together. We first focus on the phylogenetic and metabolic diversity of these symbioses and then highlight selected research directions that could advance our understanding of the processes that shaped the evolutionary and ecological success of these associations.


Assuntos
Ecossistema , Fontes Hidrotermais , Animais , Bactérias/genética , Bactérias/metabolismo , Filogenia , Simbiose/fisiologia
3.
Plant Mol Biol ; 114(2): 21, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368585

RESUMO

Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.


Assuntos
Arabidopsis , Lotus , Arabidopsis/genética , Simbiose/genética , Genótipo , Agricultura , Evolução Biológica , Lotus/genética
4.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34285069

RESUMO

Hybrids account for nearly all commercially planted varieties of maize and many other crop plants because crosses between inbred lines of these species produce first-generation [F1] offspring that greatly outperform their parents. The mechanisms underlying this phenomenon, called heterosis or hybrid vigor, are not well understood despite over a century of intensive research. The leading hypotheses-which focus on quantitative genetic mechanisms (dominance, overdominance, and epistasis) and molecular mechanisms (gene dosage and transcriptional regulation)-have been able to explain some but not all of the observed patterns of heterosis. Abiotic stressors are known to impact the expression of heterosis; however, the potential role of microbes in heterosis has largely been ignored. Here, we show that heterosis of root biomass and other traits in maize is strongly dependent on the belowground microbial environment. We found that, in some cases, inbred lines perform as well by these criteria as their F1 offspring under sterile conditions but that heterosis can be restored by inoculation with a simple community of seven bacterial strains. We observed the same pattern for seedlings inoculated with autoclaved versus live soil slurries in a growth chamber and for plants grown in steamed or fumigated versus untreated soil in the field. In a different field site, however, soil steaming increased rather than decreased heterosis, indicating that the direction of the effect depends on community composition, environment, or both. Together, our results demonstrate an ecological phenomenon whereby soil microbes differentially impact the early growth of inbred and hybrid maize.


Assuntos
Bactérias/metabolismo , Fungos/fisiologia , Vigor Híbrido , Plântula/crescimento & desenvolvimento , Microbiologia do Solo , Zea mays/crescimento & desenvolvimento , Plântula/microbiologia , Zea mays/microbiologia
5.
Mol Plant Microbe Interact ; 35(11): 977-988, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35876747

RESUMO

Metaproteomics is a powerful tool for the characterization of metabolism, physiology, and functional interactions in microbial communities, including plant-associated microbiota. However, the metaproteomic methods that have been used to study plant-associated microbiota are very laborious and require large amounts of plant tissue, hindering wider application of these methods. We optimized and evaluated different protein extraction methods for metaproteomics of plant-associated microbiota in two different plant species (Arabidopsis and maize). Our main goal was to identify a method that would work with low amounts of input material (40 to 70 mg) and that would maximize the number of identified microbial proteins. We tested eight protocols, each comprising a different combination of physical lysis method, extraction buffer, and cell-enrichment method on roots from plants grown with synthetic microbial communities. We assessed the performance of the extraction protocols by liquid chromatography-tandem mass spectrometry-based metaproteomics and found that the optimal extraction method differed between the two species. For Arabidopsis roots, protein extraction by beating whole roots with small beads provided the greatest number of identified microbial proteins and improved the identification of proteins from gram-positive bacteria. For maize, vortexing root pieces in the presence of large glass beads yielded the greatest number of microbial proteins identified. Based on these data, we recommend the use of these two methods for metaproteomics with Arabidopsis and maize. Furthermore, detailed descriptions of the eight tested protocols will enable future optimization of protein extraction for metaproteomics in other dicot and monocot plants. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Assuntos
Arabidopsis , Microbiota , Cromatografia Líquida , Proteoma , Espectrometria de Massas , Plantas
6.
Nature ; 534(7606): 254-8, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279223

RESUMO

Breviatea form a lineage of free living, unicellular protists, distantly related to animals and fungi. This lineage emerged almost one billion years ago, when the oceanic oxygen content was low, and extant Breviatea have evolved or retained an anaerobic lifestyle. Here we report the cultivation of Lenisia limosa, gen. et sp. nov., a newly discovered breviate colonized by relatives of animal-associated Arcobacter. Physiological experiments show that the association of L. limosa with Arcobacter is driven by the transfer of hydrogen and is mutualistic, providing benefits to both partners. With whole-genome sequencing and differential proteomics, we show that an experimentally observed fitness gain of L. limosa could be explained by the activity of a so far unknown type of NAD(P)H-accepting hydrogenase, which is expressed in the presence, but not in the absence, of Arcobacter. Differential proteomics further reveal that the presence of Lenisia stimulates expression of known 'virulence' factors by Arcobacter. These proteins typically enable colonization of animal cells during infection, but may in the present case act for mutual benefit. Finally, re-investigation of two currently available transcriptomic data sets of other Breviatea reveals the presence and activity of related hydrogen-consuming Arcobacter, indicating that mutualistic interaction between these two groups of microbes might be pervasive. Our results support the notion that molecular mechanisms involved in virulence can also support mutualism, as shown here for Arcobacter and Breviatea.


Assuntos
Arcobacter/fisiologia , Eucariotos/fisiologia , Hidrogênio/metabolismo , Simbiose , Arcobacter/genética , Eucariotos/enzimologia , Eucariotos/genética , Aptidão Genética , Hidrogenase/genética , Hidrogenase/metabolismo , NADP/metabolismo , Proteômica , Simbiose/genética , Transcriptoma , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(17): 8505-8514, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30962361

RESUMO

Hosts of chemoautotrophic bacteria typically have much higher biomass than their symbionts and consume symbiont cells for nutrition. In contrast to this, chemoautotrophic Candidatus Riegeria symbionts in mouthless Paracatenula flatworms comprise up to half of the biomass of the consortium. Each species of Paracatenula harbors a specific Ca Riegeria, and the endosymbionts have been vertically transmitted for at least 500 million years. Such prolonged strict vertical transmission leads to streamlining of symbiont genomes, and the retained physiological capacities reveal the functions the symbionts provide to their hosts. Here, we studied a species of Paracatenula from Sant'Andrea, Elba, Italy, using genomics, gene expression, imaging analyses, as well as targeted and untargeted MS. We show that its symbiont, Ca R. santandreae has a drastically smaller genome (1.34 Mb) than the symbiont´s free-living relatives (4.29-4.97 Mb) but retains a versatile and energy-efficient metabolism. It encodes and expresses a complete intermediary carbon metabolism and enhanced carbon fixation through anaplerosis and accumulates massive intracellular inclusions such as sulfur, polyhydroxyalkanoates, and carbohydrates. Compared with symbiotic and free-living chemoautotrophs, Ca R. santandreae's versatility in energy storage is unparalleled in chemoautotrophs with such compact genomes. Transmission EM as well as host and symbiont expression data suggest that Ca R. santandreae largely provisions its host via outer-membrane vesicle secretion. With its high share of biomass in the symbiosis and large standing stocks of carbon and energy reserves, it has a unique role for bacterial symbionts-serving as the primary energy storage for its animal host.


Assuntos
Genoma Bacteriano/genética , Platelmintos , Rhodospirillaceae , Simbiose , Animais , Crescimento Quimioautotrófico/genética , Crescimento Quimioautotrófico/fisiologia , Redes e Vias Metabólicas , Platelmintos/metabolismo , Platelmintos/microbiologia , Platelmintos/fisiologia , Rhodospirillaceae/genética , Rhodospirillaceae/fisiologia , Simbiose/genética , Simbiose/fisiologia
8.
J Bacteriol ; 203(21): e0039921, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34370559

RESUMO

Bacteria have evolved diverse strategies to compete for a niche, including the type VI secretion system (T6SS), a contact-dependent killing mechanism. T6SSs are common in bacterial pathogens, commensals, and beneficial symbionts, where they affect the diversity and spatial structure of host-associated microbial communities. Although T6SS gene clusters are often located on genomic islands (GIs), which may be transferred as a unit, the regulatory strategies that promote gene expression once the T6SS genes are transferred into a new cell are not known. We used the squid symbiont Vibrio fischeri to identify essential regulatory factors that control expression of a strain-specific T6SS encoded on a GI. We found that a transcriptional reporter for this T6SS is active only in strains that contain the T6SS-encoding GI, suggesting the GI encodes at least one essential regulator. A transposon screen identified seven mutants that could not activate the reporter. These mutations mapped exclusively to three genes on the T6SS-containing GI that encode two essential structural proteins (a TssA-like protein and TssM) and a transcriptional regulator (TasR). Using T6SS reporters, reverse transcription-PCR (RT-PCR), competition assays, and differential proteomics, we found that all three genes are required for expression of many T6SS components, except for the TssA-like protein and TssM, which are constitutively expressed. Based on these findings, we propose a model whereby T6SS expression requires conserved structural proteins, in addition to the essential regulator TasR, and this ability to self-regulate may be a strategy to activate T6SS expression upon transfer of T6SS-encoding elements into a new bacterial host. IMPORTANCE Interbacterial weapons like the T6SS are often located on mobile genetic elements, and their expression is highly regulated. We found that two conserved structural proteins are required for T6SS expression in Vibrio fischeri. These structural proteins also contain predicted GTPase and GTP binding domains, suggesting their role in promoting T6SS expression may involve sensing the energetic state of the cell. Such a mechanism would provide a direct link between T6SS activation and cellular energy levels, providing a "checkpoint" to ensure the cell has sufficient energy to build such a costly weapon. Because these regulatory factors are encoded within the T6SS gene cluster, they are predicted to move with the genetic element to activate T6SS expression in a new host cell.


Assuntos
Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Sistemas de Secreção Tipo VI/metabolismo , Aliivibrio fischeri/genética , Proteínas de Bactérias/genética , Genótipo , Mutação , Regiões Promotoras Genéticas , Sistemas de Secreção Tipo VI/genética
9.
Proc Natl Acad Sci U S A ; 115(24): E5576-E5584, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844191

RESUMO

Measurements of stable carbon isotope ratios (δ13C) are widely used in biology to address questions regarding food sources and metabolic pathways used by organisms. The analysis of these so-called stable isotope fingerprints (SIFs) for microbes involved in biogeochemical cycling and microbiota of plants and animals has led to major discoveries in environmental microbiology. Currently, obtaining SIFs for microbial communities is challenging as the available methods either only provide low taxonomic resolution, such as the use of lipid biomarkers, or are limited in throughput, such as nanoscale secondary ion MS imaging of single cells. Here we present "direct protein-SIF" and the Calis-p software package (https://sourceforge.net/projects/calis-p/), which enable high-throughput measurements of accurate δ13C values for individual species within a microbial community. We benchmark the method using 20 pure culture microorganisms and show that the method reproducibly provides SIF values consistent with gold-standard bulk measurements performed with an isotope ratio mass spectrometer. Using mock community samples, we demonstrate that SIF values can also be obtained for individual species within a microbial community. Finally, a case study of an obligate bacteria-animal symbiosis shows that direct protein-SIF confirms previous physiological hypotheses and can provide unexpected insights into the symbionts' metabolism. This confirms the usefulness of this approach to accurately determine δ13C values for different species in microbial community samples.


Assuntos
Carbono/metabolismo , Redes e Vias Metabólicas/fisiologia , Microbiota/fisiologia , Proteoma/metabolismo , Proteômica/métodos , Animais , Isótopos de Carbono/metabolismo , Microbiologia Ambiental , Marcação por Isótopo/métodos , Software , Simbiose/fisiologia
11.
J Bacteriol ; 198(23): 3142-3151, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27621281

RESUMO

Lost traits can reevolve, but the probability of trait reversion depends partly on a trait's genetic complexity. Myxobacterial fruiting body development is a complex trait controlled by the small RNA (sRNA) Pxr, which blocks development under conditions of nutrient abundance. In developmentally proficient strains of Myxococcus xanthus, starvation relaxes the inhibition by Pxr, thereby allowing development to proceed. In contrast, the lab-evolved strain OC does not develop because it fails to relay an early starvation signal that alleviates inhibition by Pxr. A descendant of OC, strain PX, previously reevolved developmental proficiency via a mutation in pxr that inactivates its function. A single-colony screen was used to test whether reversion of OC to developmental proficiency occurs only by mutation of pxr or might also occur through alternative regulatory loci. Five spontaneous mutants of OC that exhibited restored development were isolated, and all five showed defects in Pxr synthesis, structure, or processing, including one that incurred an eight-nucleotide deletion in pxr Two mutations occurred in the σ54 response regulator (RR) gene MXAN_1078 (named pxrR here), immediately upstream of pxr PxrR was found to positively regulate pxr transcription, presumably via the σ54 promoter of pxr Two other mutations were identified in a histidine kinase (HK) gene (MXAN_1077; named pxrK here) immediately upstream of pxrR Evolutionarily, the rate of trait restoration documented in this study suggests that reversion of social defects in natural microbial populations may be common. Molecularly, these results suggest a mechanism by which the regulatory functions of an HK-RR two-component signaling system and an sRNA are integrated to control initiation of myxobacterial development. IMPORTANCE: Many myxobacteria initiate a process of multicellular fruiting body development upon starvation, but key features of the regulatory network controlling the transition from growth to development remain obscure. Previous work with Myxococcus xanthus identified the first small RNA (sRNA) regulator (Pxr) known to serve as a gatekeeper in this life history transition, as it blocks development when nutrients are abundant. In the present study, a screen for spontaneous mutants of M. xanthus was developed that revealed a two-component system operon (encoding a histidine kinase and a σ54 response regulator) associated with the production and processing of Pxr sRNA. This discovery broadens our knowledge of early developmental gene regulation and also represents an evolutionary integration of two-component signaling and sRNA gene regulation to control a bacterial social trait.


Assuntos
Regulação Bacteriana da Expressão Gênica , Myxococcus xanthus/crescimento & desenvolvimento , Myxococcus xanthus/genética , RNA Bacteriano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento , Histidina Quinase/genética , Histidina Quinase/metabolismo , Mutação , Myxococcus xanthus/metabolismo , RNA Bacteriano/genética
12.
BMC Genomics ; 17(1): 942, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871231

RESUMO

BACKGROUND: The gutless marine worm Olavius algarvensis has a completely reduced digestive and excretory system, and lives in an obligate nutritional symbiosis with bacterial symbionts. While considerable knowledge has been gained of the symbionts, the host has remained largely unstudied. Here, we generated transcriptomes and proteomes of O. algarvensis to better understand how this annelid worm gains nutrition from its symbionts, how it adapted physiologically to a symbiotic lifestyle, and how its innate immune system recognizes and responds to its symbiotic microbiota. RESULTS: Key adaptations to the symbiosis include (i) the expression of gut-specific digestive enzymes despite the absence of a gut, most likely for the digestion of symbionts in the host's epidermal cells; (ii) a modified hemoglobin that may bind hydrogen sulfide produced by two of the worm's symbionts; and (iii) the expression of a very abundant protein for oxygen storage, hemerythrin, that could provide oxygen to the symbionts and the host under anoxic conditions. Additionally, we identified a large repertoire of proteins involved in interactions between the worm's innate immune system and its symbiotic microbiota, such as peptidoglycan recognition proteins, lectins, fibrinogen-related proteins, Toll and scavenger receptors, and antimicrobial proteins. CONCLUSIONS: We show how this worm, over the course of evolutionary time, has modified widely-used proteins and changed their expression patterns in adaptation to its symbiotic lifestyle and describe expressed components of the innate immune system in a marine oligochaete. Our results provide further support for the recent realization that animals have evolved within the context of their associations with microbes and that their adaptive responses to symbiotic microbiota have led to biological innovations.


Assuntos
Adaptação Biológica/genética , Imunidade Inata/genética , Oligoquetos/genética , Oligoquetos/metabolismo , Proteoma , Simbiose/genética , Transcriptoma , Adaptação Biológica/imunologia , Sequência de Aminoácidos , Animais , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota , Modelos Biológicos , Oligoquetos/imunologia , Proteômica/métodos , Receptores de Reconhecimento de Padrão/metabolismo , Simbiose/imunologia
13.
Appl Environ Microbiol ; 82(1): 62-70, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26475101

RESUMO

Fluorescence in situ hybridization (FISH) has become a vital tool for environmental and medical microbiology and is commonly used for the identification, localization, and isolation of defined microbial taxa. However, fluorescence signal strength is often a limiting factor for targeting all members in a microbial community. Here, we present the application of a multilabeled FISH approach (MiL-FISH) that (i) enables the simultaneous targeting of up to seven microbial groups using combinatorial labeling of a single oligonucleotide probe, (ii) is applicable for the isolation of unfixed environmental microorganisms via fluorescence-activated cell sorting (FACS), and (iii) improves signal and imaging quality of tissue sections in acrylic resin for precise localization of individual microbial cells. We show the ability of MiL-FISH to distinguish between seven microbial groups using a mock community of marine organisms and its applicability for the localization of bacteria associated with animal tissue and their isolation from host tissues using FACS. To further increase the number of potential target organisms, a streamlined combinatorial labeling and spectral imaging-FISH (CLASI-FISH) concept with MiL-FISH probes is presented here. Through the combination of increased probe signal, the possibility of targeting hard-to-detect taxa and isolating these from an environmental sample, the identification and precise localization of microbiota in host tissues, and the simultaneous multilabeling of up to seven microbial groups, we show here that MiL-FISH is a multifaceted alternative to standard monolabeled FISH that can be used for a wide range of biological and medical applications.


Assuntos
Bactérias/genética , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , Bactérias/citologia , Citometria de Fluxo , Sondas de Oligonucleotídeos/química , Coloração e Rotulagem
14.
Mol Ecol ; 25(13): 3203-23, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26826340

RESUMO

The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur-oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto- and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well-supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto- and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria.


Assuntos
Anelídeos/microbiologia , Evolução Biológica , Gammaproteobacteria/genética , Nematoides/microbiologia , Simbiose , Animais , DNA Bacteriano/genética , Marcadores Genéticos , Oceanos e Mares , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
BMC Genomics ; 16: 7, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608871

RESUMO

BACKGROUND: Viruses are a significant component of the intestinal microbiota in mammals. In recent years, advances in sequencing technologies and data analysis techniques have enabled detailed metagenomic studies investigating intestinal viromes (collections of bacteriophage and eukaryotic viral nucleic acids) and their potential contributions to the ecology of the microbiota. An important component of virome studies is the isolation and purification of virus-like particles (VLPs) from intestinal contents or feces. Several methods have been applied to isolate VLPs from intestinal samples, yet to our knowledge, the efficiency and reproducibility between methods have not been explored. A rigorous evaluation of methods for VLP purification is critical as many studies begin to move from descriptive analyses of virus diversity to studies striving to quantitatively compare viral abundances across many samples. Therefore, reproducible VLP purification methods which allow for high sample throughput are needed. Here we compared and evaluated four methods for VLP purification using artificial intestinal microbiota samples of known bacterial and viral composition. RESULTS: We compared the following four methods of VLP purification from fecal samples: (i) filtration + DNase, (ii) dithiothreitol treatment + filtration + DNase, (iii) filtration + DNase + PEG precipitation and (iv) filtration + DNase + CsCl density gradient centrifugation. Three of the four tested methods worked well for VLP purification. We observed several differences between methods related to the removal efficiency of bacterial and host DNAs and biases against specific phages. In particular the CsCl density gradient centrifugation method, which is frequently used for VLP purification, was most efficient in removing host derived DNA, but also showed strong discrimination against specific phages and showed a lower reproducibility of quantitative results. CONCLUSIONS: Based on our data we recommend the use of methods (i) or (ii) for large scale studies when quantitative comparison of viral abundances across samples is required. The CsCl density gradient centrifugation method, while being excellently suited to achieve highly purified samples, in our opinion, should be used with caution when performing quantitative studies.


Assuntos
Bacteriófagos/isolamento & purificação , Técnicas Genéticas/normas , Intestinos/virologia , Metagenômica/métodos , Animais , Bacteriófagos/genética , Mapeamento de Sequências Contíguas , DNA Viral/análise , DNA Viral/isolamento & purificação , Fezes/virologia , Metagenoma , Camundongos , Camundongos Endogâmicos C57BL , Reprodutibilidade dos Testes , Análise de Sequência de DNA
16.
Environ Microbiol ; 17(12): 5023-35, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26013766

RESUMO

The gutless marine worm Olavius algarvensis lives in symbiosis with chemosynthetic bacteria that provide nutrition by fixing carbon dioxide (CO2 ) into biomass using reduced sulfur compounds as energy sources. A recent metaproteomic analysis of the O. algarvensis symbiosis indicated that carbon monoxide (CO) and hydrogen (H2 ) might also be used as energy sources. We provide direct evidence that the O. algarvensis symbiosis consumes CO and H2 . Single cell imaging using nanoscale secondary ion mass spectrometry revealed that one of the symbionts, the γ3-symbiont, uses the energy from CO oxidation to fix CO2 . Pore water analysis revealed considerable in-situ concentrations of CO and H2 in the O. algarvensis environment, Mediterranean seagrass sediments. Pore water H2 concentrations (89-2147 nM) were up to two orders of magnitude higher than in seawater, and up to 36-fold higher than previously known from shallow-water marine sediments. Pore water CO concentrations (17-51 nM) were twice as high as in the overlying seawater (no literature data from other shallow-water sediments are available for comparison). Ex-situ incubation experiments showed that dead seagrass rhizomes produced large amounts of CO. CO production from decaying plant material could thus be a significant energy source for microbial primary production in seagrass sediments.


Assuntos
Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Hidrogênio/metabolismo , Oligoquetos/microbiologia , Água do Mar/microbiologia , Animais , Dióxido de Carbono/metabolismo , Metabolismo Energético , Região do Mediterrâneo , Oxirredução , Espectrometria de Massa de Íon Secundário , Compostos de Enxofre/metabolismo , Simbiose
17.
Proc Natl Acad Sci U S A ; 109(19): E1173-82, 2012 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-22517752

RESUMO

Low nutrient and energy availability has led to the evolution of numerous strategies for overcoming these limitations, of which symbiotic associations represent a key mechanism. Particularly striking are the associations between chemosynthetic bacteria and marine animals that thrive in nutrient-poor environments such as the deep sea because the symbionts allow their hosts to grow on inorganic energy and carbon sources such as sulfide and CO(2). Remarkably little is known about the physiological strategies that enable chemosynthetic symbioses to colonize oligotrophic environments. In this study, we used metaproteomics and metabolomics to investigate the intricate network of metabolic interactions in the chemosynthetic association between Olavius algarvensis, a gutless marine worm, and its bacterial symbionts. We propose previously undescribed pathways for coping with energy and nutrient limitation, some of which may be widespread in both free-living and symbiotic bacteria. These pathways include (i) a pathway for symbiont assimilation of the host waste products acetate, propionate, succinate and malate; (ii) the potential use of carbon monoxide as an energy source, a substrate previously not known to play a role in marine invertebrate symbioses; (iii) the potential use of hydrogen as an energy source; (iv) the strong expression of high-affinity uptake transporters; and (v) as yet undescribed energy-efficient steps in CO(2) fixation and sulfate reduction. The high expression of proteins involved in pathways for energy and carbon uptake and conservation in the O. algarvensis symbiosis indicates that the oligotrophic nature of its environment exerted a strong selective pressure in shaping these associations.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Oligoquetos/metabolismo , Proteômica/métodos , Simbiose , Animais , Bactérias/crescimento & desenvolvimento , Ciclo do Carbono , Cromatografia Líquida de Alta Pressão , Ecossistema , Eletroforese em Gel de Poliacrilamida , Metabolismo Energético , Interações Hospedeiro-Patógeno , Hidrogênio/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica/métodos , Oligoquetos/microbiologia , Água do Mar
18.
Methods Mol Biol ; 2820: 57-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38941015

RESUMO

Root metaproteome analysis can reveal the functions that govern plant-microbe and microbe-microbe interactions under specific environmental conditions. Efficient protein extraction method from microbes associated with plant roots is crucial for the comprehensive analysis of the metaproteome. In this chapter, a straightforward protein extraction method for roots of Arabidopsis inoculated with a microbial community that uses only milligrams of tissue is outlined. In addition, the plant inoculation using a synthetic community (SynCom) and the methods for a nanoflow liquid chromatography coupled to a high-resolution/high-accuracy mass spectrometer (LC-MS/MS) are described.


Assuntos
Arabidopsis , Raízes de Plantas , Proteômica , Espectrometria de Massas em Tandem , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Fluxo de Trabalho , Bactérias/metabolismo , Bactérias/genética , Proteoma/metabolismo
19.
Microbiol Spectr ; 12(1): e0240123, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38084978

RESUMO

IMPORTANCE: Synthetic communities (SynComs) are an invaluable tool to characterize and model plant-microbe interactions. Multimember SynComs approximate intricate real-world interactions between plants and their microbiome, but the complexity and time required for their construction increase enormously for each additional member added to the SynCom. Therefore, researchers who study a diversity of microbiomes using SynComs are looking for ways to simplify the use of SynComs. In this manuscript, we evaluate the feasibility of creating ready-to-use freezer stocks of a well-studied seven-member SynCom for maize roots. The frozen ready-to-use SynCom stocks work according to the principle of "just add buffer and apply to sterilized seeds or seedlings" and thus can save time applied in multiple days of laborious growing and combining of multiple microorganisms. We show that ready-to-use SynCom stocks provide comparable results to those of freshly constructed SynComs and thus allow for significant time savings when working with SynComs.


Assuntos
Microbiota , Zea mays , Raízes de Plantas , Bactérias , Plantas , Microbiologia do Solo
20.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979297

RESUMO

Protein is an essential macronutrient and variations in its source and quantity have been shown to impact long-term health outcomes. Differential health impacts of dietary proteins from various sources are likely driven by differences in their digestibility by the host and subsequent availability to the intestinal microbiota. However, our current understanding regarding the fate of dietary proteins from different sources in the gut, specifically how component proteins within these sources interact with the host and the gut microbiota, is limited. To determine which dietary proteins are efficiently digested by the host and which proteins escape host digestion and are used by the gut microbiota, we used high-resolution mass spectrometry to quantify the proteins that make up different dietary protein sources before and after digestion in germ-free and conventionally raised mice. Contrary to expectation, we detected proteins from all sources in fecal samples of both germ-free and conventional mice suggesting that even protein sources with a high digestive efficiency make it in part to the colon where they can serve as a substrate for the microbiota. Additionally, we found clear patterns where specific component proteins of the dietary protein sources were used as a preferred substrate by the microbiota or were not as accessible to the microbiota. We found that specific proteins with functions that could impact host health and physiology were differentially enriched in germ-free or conventionally raised mice. These findings reveal large differences in the fate of dietary protein from various sources in the gut that could explain some of their differential health impacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA