RESUMO
Parkinson's disease (PD) is a progressive, neurodegenerative disease affecting over 1% of the population beyond 65 years of age. Although some PD cases are inheritable, the majority of PD cases occur in a sporadic manner. Risk factors comprise next to heredity, age, and gender also exposure to neurotoxins from for instance pesticides and herbicides. As PD is characterized by a loss of dopaminergic neurons in the substantia nigra, it is nearly impossible to access and extract these cells from patients for investigating disease mechanisms. The emergence of induced pluripotent stem (iPSC) technology allows differentiating and growing human dopaminergic neurons, which can be used for in vitro disease modeling. Here, we differentiated human iPSCs into dopaminergic neurons, and subsequently exposed the cells to increasing concentrations of the neurotoxin MPP+. Temporal transcriptomics analysis revealed a strong time- and dose-dependent response with genes over-represented across pathways involved in PD etiology such as "Parkinson's Disease", "Dopaminergic signaling" and "calcium signaling". Moreover, we validated this disease model by showing robust overlap with a meta-analysis of transcriptomics data from substantia nigra from post-mortem PD patients. The overlap included genes linked to e.g. mitochondrial dysfunction, neuron differentiation, apoptosis and inflammation. Our data shows, that MPP+-induced, human iPSC-derived dopaminergic neurons present molecular perturbations as observed in the etiology of PD. Therefore we propose iPSC-derived dopaminergic neurons as a foundation for a novel sporadic PD model to study the pathomolecular mechanisms of PD, but also to screen for novel anti-PD drugs and to develop and test new treatment strategies.
Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Doenças Neurodegenerativas/metabolismo , Transcriptoma/genéticaRESUMO
Doxorubicin is widely used in the treatment of different cancers, and its side effects can be severe in many tissues, including the intestines. Symptoms such as diarrhoea and abdominal pain caused by intestinal inflammation lead to the interruption of chemotherapy. Nevertheless, the molecular mechanisms associated with doxorubicin intestinal toxicity have been poorly explored. This study aims to investigate such mechanisms by exposing 3D small intestine and colon organoids to doxorubicin and to evaluate transcriptomic responses in relation to viability and apoptosis as physiological endpoints. The in vitro concentrations and dosing regimens of doxorubicin were selected based on physiologically based pharmacokinetic model simulations of treatment regimens recommended for cancer patients. Cytotoxicity and cell morphology were evaluated as well as gene expression and biological pathways affected by doxorubicin. In both types of organoids, cell cycle, the p53 signalling pathway, and oxidative stress were the most affected pathways. However, significant differences between colon and SI organoids were evident, particularly in essential metabolic pathways. Short time-series expression miner was used to further explore temporal changes in gene profiles, which identified distinct tissue responses. Finally, in silico proteomics revealed important proteins involved in doxorubicin metabolism and cellular processes that were in line with the transcriptomic responses, including cell cycle and senescence, transport of molecules, and mitochondria impairment. This study provides new insight into doxorubicin-induced effects on the gene expression levels in the intestines. Currently, we are exploring the potential use of these data in establishing quantitative systems toxicology models for the prediction of drug-induced gastrointestinal toxicity.
Assuntos
Doxorrubicina/toxicidade , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Colo/efeitos dos fármacos , Doxorrubicina/farmacologia , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Intestino Delgado/efeitos dos fármacos , Modelos Biológicos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Proteômica , Transcriptoma/genéticaRESUMO
Usage of injectable dermal fillers applied for aesthetic purposes has extensively increased over the years. As such, the number of related adverse reactions has increased, including patients showing severe complications such as product migration, topical swelling and inflammatory reactions of the skin. In order to understand the underlying molecular events of these adverse reactions we performed a genome-wide gene expression study on the multi-cell type human Phenion® Full-Thickness Skin Model exposed to five experimental hyaluronic acid (HA) preparations with increasing cross-linking degree, four commercial fillers from Perfectha®, and non-resorbable filler Bio-Alcamid®. In addition, we evaluated whether cross-linking degree or particle size of the HA-based fillers could be associated with the occurrence of adverse effects. In all cases, exposure to different HA fillers resulted in a clearly elevated gene expression of cytokines and chemokines related to acute inflammation as part of the foreign body response. Furthermore, for one experimental filler genes of OXPHOS complexes I-V were significantly down-regulated (adjusted p-value < 0.05), resulting in mitochondrial dysfunction which can be linked to over-expression of pro-inflammatory cytokines TNFα and IL-1ß and chemokine CCL2. Our hypothesis that cross-linking degree or particle size of the HA-based fillers is related to the biological responses induced by these fillers could only partially be confirmed for particle size. In conclusion, our innovative approach resulted in gene expression changes from a human 3D skin model exposed to dermal fillers that mechanistically substantiate aforementioned adverse reactions, and thereby adds to the weight of evidence that these fillers may induce inflammatory and fibrotic responses.
Assuntos
Preenchedores Dérmicos , Corpos Estranhos , Envelhecimento da Pele , Humanos , Ácido Hialurônico/farmacologia , Preenchedores Dérmicos/efeitos adversos , Transcriptoma , Materiais Biocompatíveis/efeitos adversos , Citocinas/genéticaRESUMO
Gefitinib is a tyrosine kinase inhibitor (TKI) that selectively inhibits the epidermal growth factor receptor (EGFR), hampering cell growth and proliferation. Due to its action, gefitinib has been used in the treatment of cancers that present abnormally increased expression of EGFR. However, side effects from gefitinib therapy may occur, among which diarrhoea is most common, that can lead to interruption of the planned therapy in the more severe cases. The mechanisms underlying intestinal toxicity induced by gefitinib are not well understood. Therefore, this study aims at providing insight into these mechanisms based on transcriptomic responses induced in vitro. A 3D culture of healthy human colon and small intestine (SI) organoids was exposed to 0.1, 1, 10 and 30 µM of gefitinib, for a maximum of three days. These drug concentrations were selected using physiologically-based pharmacokinetic simulation considering patient dosing regimens. Samples were used for the analysis of viability and caspase 3/7 activation, image-based analysis of structural changes, as well as RNA isolation and sequencing via high-throughput techniques. Differential gene expression analysis showed that gefitinib perturbed signal transduction pathways, apoptosis, cell cycle, FOXO-mediated transcription, p53 signalling pathway, and metabolic pathways. Remarkably, opposite expression patterns of genes associated with metabolism of lipids and cholesterol biosynthesis were observed in colon versus SI organoids in response to gefitinib. These differences in the organoids' responses could be linked to increased activated protein kinase (AMPK) activity in colon, which can influence the sensitivity of the colon to the drug. Therefore, this study sheds light on how gefitinib induces toxicity in intestinal organoids and provides an avenue towards the development of a potential tool for drug screening and development.
Assuntos
Gefitinibe/farmacologia , Intestinos/efeitos dos fármacos , Organoides/efeitos dos fármacos , Transcriptoma/genética , Idoso , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Humanos , Intestinos/metabolismo , Masculino , Organoides/metabolismo , Quinazolinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismoRESUMO
Resorbable tissue fillers for aesthetic purposes can induce severe complications including product migration, late swelling, and inflammatory reactions. The relation between product characteristics and adverse effects is not well understood. We hypothesized that the degree of cross-linking hyaluronic acid (HA) fillers was associated with the occurrence of adverse effects. Five experimental HA preparations similar to HA fillers were synthesized with an increasing degree of cross-linking. Furthermore, a series of commercial fillers (Perfectha®) was obtained that differ in degradation time based on the size of their particulate HA components. Cytotoxic responses and cytokine production by human THP-1-derived macrophages exposed to extracts of the evaluated resorbable HA fillers were absent to minimal. Gene expression analysis of the HA-exposed macrophages revealed the responses related to cell cycle control and immune reactivity. Our results could not confirm the hypothesis that the level of cross-linking in our experimental HA fillers or the particulate size of commercial HA fillers is related to the induced biological responses. However, the evaluation of cytokine induction and gene expression in macrophages after biomaterial exposure presents promising opportunities for the development of methods to identify cellular processes that may be predictive for biomaterial-induced responses in patients.
Assuntos
Preenchedores Dérmicos , Ácido Hialurônico , Materiais Biocompatíveis/efeitos adversos , Citocinas , Preenchedores Dérmicos/farmacologia , Humanos , Ácido Hialurônico/efeitos adversos , MacrófagosRESUMO
5-Fluorouracil (5-FU) is a widely used chemotherapeutical that induces acute toxicity in the small and large intestine of patients. Symptoms can be severe and lead to the interruption of cancer treatments. However, there is limited understanding of the molecular mechanisms underlying 5-FU-induced intestinal toxicity. In this study, well-established 3D organoid models of human colon and small intestine (SI) were used to characterize 5-FU transcriptomic and metabolomic responses. Clinically relevant 5-FU concentrations for in vitro testing in organoids were established using physiologically based pharmacokinetic simulation of dosing regimens recommended for cancer patients, resulting in exposures to 10, 100 and 1000 µM. After treatment, different measurements were performed: cell viability and apoptosis; image analysis of cell morphological changes; RNA sequencing; and metabolome analysis of supernatant from organoids cultures. Based on analysis of the differentially expressed genes, the most prominent molecular pathways affected by 5-FU included cell cycle, p53 signalling, mitochondrial ATP synthesis and apoptosis. Short time-series expression miner demonstrated tissue-specific mechanisms affected by 5-FU, namely biosynthesis and transport of small molecules, and mRNA translation for colon; cell signalling mediated by Rho GTPases and fork-head box transcription factors for SI. Metabolomic analysis showed that in addition to the effects on TCA cycle and oxidative stress in both organoids, tissue-specific metabolic alterations were also induced by 5-FU. Multi-omics integration identified transcription factor E2F1, a regulator of cell cycle and apoptosis, as the best key node across all samples. These results provide new insights into 5-FU toxicity mechanisms and underline the relevance of human organoid models in the safety assessment in drug development.
Assuntos
Colo/efeitos dos fármacos , Fluoruracila/toxicidade , Intestino Delgado/efeitos dos fármacos , Modelos Biológicos , Antimetabólitos Antineoplásicos/administração & dosagem , Antimetabólitos Antineoplásicos/farmacocinética , Antimetabólitos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colo/patologia , Relação Dose-Resposta a Droga , Feminino , Fluoruracila/administração & dosagem , Fluoruracila/farmacocinética , Humanos , Intestino Delgado/patologia , Masculino , Metabolômica , Organoides/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , TranscriptomaRESUMO
Recent prospective studies have shown that dysregulation of the immune system may precede the development of B-cell lymphomas (BCL) in immunocompetent individuals. However, to date, the studies were restricted to a few immune markers, which were considered separately. Using a nested case-control study within two European prospective cohorts, we measured plasma levels of 28 immune markers in samples collected a median of 6 years before diagnosis (range 2.01-15.97) in 268 incident cases of BCL (including multiple myeloma [MM]) and matched controls. Linear mixed models and partial least square analyses were used to analyze the association between levels of immune marker and the incidence of BCL and its main histological subtypes and to investigate potential biomarkers predictive of the time to diagnosis. Linear mixed model analyses identified associations linking lower levels of fibroblast growth factor-2 (FGF-2 p = 7.2 × 10-4 ) and transforming growth factor alpha (TGF-α, p = 6.5 × 10-5 ) and BCL incidence. Analyses stratified by histological subtypes identified inverse associations for MM subtype including FGF-2 (p = 7.8 × 10-7 ), TGF-α (p = 4.08 × 10-5 ), fractalkine (p = 1.12 × 10-3 ), monocyte chemotactic protein-3 (p = 1.36 × 10-4 ), macrophage inflammatory protein 1-alpha (p = 4.6 × 10-4 ) and vascular endothelial growth factor (p = 4.23 × 10-5 ). Our results also provided marginal support for already reported associations between chemokines and diffuse large BCL (DLBCL) and cytokines and chronic lymphocytic leukemia (CLL). Case-only analyses showed that Granulocyte-macrophage colony stimulating factor levels were consistently higher closer to diagnosis, which provides further evidence of its role in tumor progression. In conclusion, our study suggests a role of growth-factors in the incidence of MM and of chemokine and cytokine regulation in DLBCL and CLL.
Assuntos
Biomarcadores/sangue , Linfoma Difuso de Grandes Células B/sangue , Mieloma Múltiplo/sangue , Adulto , Idoso , Estudos de Casos e Controles , Quimiocina CCL7/sangue , Quimiocina CX3CL1/sangue , Europa (Continente) , Feminino , Fator 2 de Crescimento de Fibroblastos/sangue , Seguimentos , Humanos , Incidência , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma Difuso de Grandes Células B/epidemiologia , Linfoma Difuso de Grandes Células B/imunologia , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/epidemiologia , Mieloma Múltiplo/imunologia , Análise Multivariada , Prognóstico , Estudos Prospectivos , Fator de Crescimento Transformador alfa/sangue , Fator A de Crescimento do Endotélio Vascular/sangueRESUMO
BACKGROUND: Obesity is an established risk factor for several common chronic diseases such as breast and colorectal cancer, metabolic and cardiovascular diseases; however, the biological basis for these relationships is not fully understood. To explore the association of obesity with these conditions, we investigated peripheral blood leucocyte (PBL) DNA methylation markers for adiposity and their contribution to risk of incident breast and colorectal cancer and myocardial infarction. METHODS: DNA methylation profiles (Illumina Infinium® HumanMethylation450 BeadChip) from 1941 individuals from four population-based European cohorts were analysed in relation to body mass index, waist circumference, waist-hip and waist-height ratio within a meta-analytical framework. In a subset of these individuals, data on genome-wide gene expression level, biomarkers of glucose and lipid metabolism were also available. Validation of methylation markers associated with all adiposity measures was performed in 358 individuals. Finally, we investigated the association of obesity-related methylation marks with breast, colorectal cancer and myocardial infarction within relevant subsets of the discovery population. RESULTS: We identified 40 CpG loci with methylation levels associated with at least one adiposity measure. Of these, one CpG locus (cg06500161) in ABCG1 was associated with all four adiposity measures (P = 9.07×10-8 to 3.27×10-18) and lower transcriptional activity of the full-length isoform of ABCG1 (P = 6.00×10-7), higher triglyceride levels (P = 5.37×10-9) and higher triglycerides-to-HDL cholesterol ratio (P = 1.03×10-10). Of the 40 informative and obesity-related CpG loci, two (in IL2RB and FGF18) were significantly associated with colorectal cancer (inversely, P < 1.6×10-3) and one intergenic locus on chromosome 1 was inversely associated with myocardial infarction (P < 1.25×10-3), independently of obesity and established risk factors. CONCLUSION: Our results suggest that epigenetic changes, in particular altered DNA methylation patterns, may be an intermediate biomarker at the intersection of obesity and obesity-related diseases, and could offer clues as to underlying biological mechanisms.
Assuntos
Adiposidade/genética , Metilação de DNA/genética , Epigenômica/métodos , Infarto do Miocárdio , Neoplasias , Obesidade , Marcadores Genéticos/genética , Estudo de Associação Genômica Ampla , Humanos , Leucócitos Mononucleares/química , Infarto do Miocárdio/epidemiologia , Infarto do Miocárdio/genética , Neoplasias/epidemiologia , Neoplasias/genética , Obesidade/epidemiologia , Obesidade/genéticaRESUMO
BACKGROUND: The regulatory management of chemicals and toxicants in the EU addresses hundreds of different chemicals and health hazards individually, one by one. An issue is that, so far, the possible interactions among chemicals or hazards are not considered as such. Another issue is the anticipated delay of several decades before effective protection of public health by regulatory decisions due to a time consuming process. Prenatal and early postnatal life is highly vulnerable to environmental health hazards with lifelong consequences, and a priority period for reduction of exposure. There are some initiatives regarding recommendations for pregnant women aiming at protection against one or another category of health hazard, however not validated by intervention studies. HYPOTHESIS: Here, we aim at strengthening the management of exposure to individual health hazards during pregnancy and lactation, with protective measures in a global strategy of Environmental Hygiene. We hypothesize that such a strategy could reduce both the individual effects of harmful agents in complex mixtures and the possible interactions among them. A panel of experts should develop and endorse implementable measures towards a protective behavior. Their application is meant to be preferably as a package of measures in order to maximize protection and minimize interactions in causing adverse effects. Testing our hypothesis requires biomonitoring studies and longitudinal evaluation of health endpoints in the offspring. Favorable effects would legitimate further action towards equal opportunity access to improved environmental health. CONCLUSION: Environmental Hygiene is proposed as a global strategy aiming at effective protection of pregnant women, unborn children and infants against lifelong consequences of exposure to combinations of adverse lifestyle factors.
Assuntos
Exposição Ambiental/prevenção & controle , Saúde Ambiental/métodos , Feto/fisiologia , Estilo de Vida , Saúde Pública/métodos , Criança , Pré-Escolar , Humanos , Higiene/normas , Lactente , Recém-NascidoRESUMO
BACKGROUND: B-cell chronic lymphocytic leukemia (CLL) is a common type of adult leukemia. It often follows an indolent course and is preceded by monoclonal B-cell lymphocytosis, an asymptomatic condition, however it is not known what causes subjects with this condition to progress to CLL. Hence the discovery of prediagnostic markers has the potential to improve the identification of subjects likely to develop CLL and may also provide insights into the pathogenesis of the disease of potential clinical relevance. RESULTS: We employed peripheral blood buffy coats of 347 apparently healthy subjects, of whom 28 were diagnosed with CLL 2.0-15.7 years after enrollment, to derive for the first time genome-wide DNA methylation, as well as gene and miRNA expression, profiles associated with the risk of future disease. After adjustment for white blood cell composition, we identified 722 differentially methylated CpG sites and 15 differentially expressed genes (Bonferroni-corrected p < 0.05) as well as 2 miRNAs (FDR < 0.05) which were associated with the risk of future CLL. The majority of these signals have also been observed in clinical CLL, suggesting the presence in prediagnostic blood of CLL-like cells. Future CLL cases who, at enrollment, had a relatively low B-cell fraction (<10%), and were therefore less likely to have been suffering from undiagnosed CLL or a precursor condition, showed profiles involving smaller numbers of the same differential signals with intensities, after adjusting for B-cell content, generally smaller than those observed in the full set of cases. A similar picture was obtained when the differential profiles of cases with time-to-diagnosis above the overall median period of 7.4 years were compared with those with shorted time-to-disease. Differentially methylated genes of major functional significance include numerous genes that encode for transcription factors, especially members of the homeobox family, while differentially expressed genes include, among others, multiple genes related to WNT signaling as well as the miRNAs miR-150-5p and miR-155-5p. CONCLUSIONS: Our findings demonstrate the presence in prediagnostic blood of future CLL patients, more than 10 years before diagnosis, of CLL-like cells which evolve as preclinical disease progresses, and point to early molecular alterations with a pathogenetic potential.
Assuntos
Biomarcadores Tumorais , Perfilação da Expressão Gênica , Leucemia Linfocítica Crônica de Células B , Biomarcadores Tumorais/genética , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/genética , MicroRNAs/genética , Prognóstico , Fatores de Tempo , HumanosRESUMO
BACKGROUND: We hypothesize that biological perturbations due to exposure to ambient air pollution are reflected in gene expression levels in peripheral blood mononuclear cells. METHODS: We assessed the association between exposure to ambient air pollution and genome-wide gene expression levels in peripheral blood mononuclear cells collected from 550 healthy subjects participating in cohorts from Italy and Sweden. Annual air pollution estimates of nitrogen oxides (NOx) at time of blood collection (1990-2006) were available from the ESCAPE study. In addition to univariate analysis and two variable selection methods to investigate the association between expression and exposure to NOx, we applied gene set enrichment analysis to assess overlap between our most perturbed genes and gene sets hypothesized to be related to air pollution and cigarette smoking. Finally, we assessed associations between NOx and CpG island methylation at the identified genes. RESULTS: Annual average NOx exposure in the Italian and Swedish cohorts was 94.2 and 6.7 µg/m, respectively. Long-term exposure to NOx was associated with seven probes in the Italian cohort and one probe in the Swedish (and combined) cohorts. For genes AHCYL2 and MTMR2, changes were also seen in the methylome. Genes hypothesized to be downregulated due to cigarette smoking were enriched among the most strongly downregulated genes from our study. CONCLUSION: This study provides evidence of subtle changes in gene expression related to exposure to long-term NOx. On a global level, the observed changes in the transcriptome may indicate similarities between air pollution and tobacco induced changes in the transcriptome.
Assuntos
Poluição do Ar/estatística & dados numéricos , Metilação de DNA , Expressão Gênica , Óxidos de Nitrogênio , Adulto , Poluentes Atmosféricos , Neoplasias da Mama/epidemiologia , Estudos de Coortes , Ilhas de CpG , Feminino , Voluntários Saudáveis , Humanos , Inflamação , Interleucina-10/imunologia , Interleucina-2/imunologia , Interleucina-8/imunologia , Itália/epidemiologia , Linfoma/epidemiologia , Masculino , Pessoa de Meia-Idade , Fumar/epidemiologia , Fumar/genética , Fumar/imunologia , Suécia/epidemiologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Valproic acid (VPA) is one of the most widely prescribed antiepileptic drugs in the world. Despite its pharmacological importance, it may cause liver toxicity and steatosis through mitochondrial dysfunction. The aim of this study is to further investigate VPA-induced mechanisms of steatosis by analyzing changes in patterns of methylation in nuclear DNA (nDNA) and mitochondrial DNA (mtDNA). Therefore, primary human hepatocytes (PHHs) were exposed to an incubation concentration of VPA that was shown to cause steatosis without inducing overt cytotoxicity. VPA was administered daily for 5 days, and this was followed by a 3 day washout (WO). Methylated DNA regions (DMRs) were identified by using the methylated DNA immunoprecipitation-sequencing (MeDIP-seq) method. The nDNA DMRs after VPA treatment could indeed be classified into oxidative stress- and steatosis-related pathways. In particular, networks of the steatosis-related gene EP300 provided novel insight into the mechanisms of toxicity induced by VPA treatment. Furthermore, we suggest that VPA induces a crosstalk between nDNA hypermethylation and mtDNA hypomethylation that plays a role in oxidative stress and steatosis development. Although most VPA-induced methylation patterns appeared reversible upon terminating VPA treatment, 31 nDNA DMRs (including 5 zinc finger protein genes) remained persistent after the WO period. Overall, we have shown that MeDIP-seq analysis is highly informative in disclosing novel mechanisms of VPA-induced toxicity in PHHs. Our results thus provide a prototype for the novel generation of interesting methylation biomarkers for repeated dose liver toxicity in vitro.
Assuntos
Nucléolo Celular/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Ácido Valproico/farmacologia , Nucléolo Celular/metabolismo , DNA Mitocondrial/metabolismo , Hepatócitos/metabolismo , Humanos , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Ácido Valproico/administração & dosagemRESUMO
Unravelling gene regulatory networks (GRNs) influenced by chemicals is a major challenge in systems toxicology. Because toxicant-induced GRNs evolve over time and dose, the analysis of global gene expression data measured at multiple time points and doses will provide insight in the adverse effects of compounds. Therefore, there is a need for mathematical methods for GRN identification from time-over-dose-dependent data. One of the current approaches for GRN inference is Time Series Network Identification (TSNI). TSNI is based on ordinary differential equations (ODE), describing the time evolution of the expression of each gene, which is assumed to be dependent on the expression of other genes and an external perturbation (i.e. chemical exposure). Here, we present Dose-Time Network Identification (DTNI), a method extending TSNI by including ODE describing how the expression of each gene evolves with dose, which is supposed to depend on the expression of other genes and the exposure time. We also adapted TSNI in order to enable inclusion of time-over-dose-dependent data from multiple compounds. Here, we show that DTNI outperforms TSNI in inferring a toxicant-induced GRN. Moreover, we show that DTNI is a suitable method to infer a GRN dose- and time-dependently induced by a group of compounds influencing a common biological process. Applying DTNI on experimental data from TG-GATEs, we demonstrate that DTNI provides in-depth information on the mode of action of compounds, in particular key events and potential molecular initiating events. Furthermore, DTNI also discloses several unknown interactions which have to be verified experimentally.
Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Substâncias Perigosas/toxicidade , Modelos Biológicos , Toxicogenética/métodos , Algoritmos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Simulação por Computador , Relação Dose-Resposta a Droga , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Análise de Regressão , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de TempoRESUMO
MOTIVATION: Comparing time courses of gene expression with time courses of phenotypic data may provide new insights in cellular mechanisms. In this study, we compared the performance of five pattern recognition methods with respect to their ability to relate genes and phenotypic data: one classical method (k-means) and four methods especially developed for time series [Short Time-series Expression Miner (STEM), Linear Mixed Model mixtures, Dynamic Time Warping for -Omics and linear modeling with R/Bioconductor limma package]. The methods were evaluated using data available from toxicological studies that had the aim to relate gene expression with phenotypic endpoints (i.e. to develop biomarkers for adverse outcomes). Additionally, technical aspects (influence of noise, number of time points and number of replicates) were evaluated on simulated data. RESULTS: None of the methods outperforms the others in terms of biology. Linear modeling with limma is mostly influenced by noise. STEM is mostly influenced by the number of biological replicates in the dataset, whereas k-means and linear modeling with limma are mostly influenced by the number of time points. In most cases, the results of the methods complement each other. We therefore provide recommendations to integrate the five methods. AVAILABILITY: The Matlab code for the simulations performed in this research is available in the Supplementary Data (Word file). The microarray data analysed in this paper are available at ArrayExpress (E-TOXM-22 and E-TOXM-23) and Gene Expression Omnibus (GSE39291). The phenotypic data are available in the Supplementary Data (Excel file). Links to the pattern recognition tools compared in this paper are provided in the main text. CONTACT: d.hendrickx@maastrichtuniversity.nl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Reconhecimento Automatizado de Padrão/métodos , Software , Antifibrinolíticos/farmacologia , Benzo(a)pireno/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Simulação por Computador , Humanos , Modelos Lineares , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Fenótipo , Fatores de Tempo , Vitamina K 3/farmacologiaRESUMO
MOTIVATION: The field of toxicogenomics (the application of '-omics' technologies to risk assessment of compound toxicities) has expanded in the last decade, partly driven by new legislation, aimed at reducing animal testing in chemical risk assessment but mainly as a result of a paradigm change in toxicology towards the use and integration of genome wide data. Many research groups worldwide have generated large amounts of such toxicogenomics data. However, there is no centralized repository for archiving and making these data and associated tools for their analysis easily available. RESULTS: The Data Infrastructure for Chemical Safety Assessment (diXa) is a robust and sustainable infrastructure storing toxicogenomics data. A central data warehouse is connected to a portal with links to chemical information and molecular and phenotype data. diXa is publicly available through a user-friendly web interface. New data can be readily deposited into diXa using guidelines and templates available online. Analysis descriptions and tools for interrogating the data are available via the diXa portal. AVAILABILITY AND IMPLEMENTATION: http://www.dixa-fp7.eu CONTACT: d.hendrickx@maastrichtuniversity.nl; info@dixa-fp7.eu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Bases de Dados de Compostos Químicos , Toxicogenética , Animais , Perfilação da Expressão Gênica , Humanos , Metabolômica , Proteômica , RatosRESUMO
In recent years, it has been shown that free radicals not only react directly with DNA but also regulate epigenetic processes such as DNA methylation, which may be relevant within the context of, for example, tumorigenesis. However, how these free radicals impact the epigenome remains unclear. We therefore investigated whether methyl and hydroxyl radicals, formed by tert-butyl hydroperoxide (TBH), change temporal DNA methylation patterns and how this interferes with genome-wide gene expression. At three time points, TBH-induced radicals in HepG2 cells were identified by electron spin resonance spectroscopy. Total 5-methylcytosine (5mC) levels were determined by liquid chromatography and tandem mass spectrometry and genome-wide changes in 5mC and gene expression by microarrays. Induced methylome changes rather represent an adaptive response to the oxidative stress-related reactions observed in the transcriptome. More specifically, we found that methyl radicals did not induce DNA methylation directly. An initial oxidative and alkylating stress-related response of the transcriptome during the early phase of TBH treatment was followed by an epigenetic response associated with cell survival signaling. Also, we identified genes of which the expression seems directly regulated by DNA methylation. This work suggests an important role of the methylome in counter-regulating primary oxidative and alkylating stress responses in the transcriptome to restore normal cell function. Altogether, the methylome may play an important role in counter-regulating primary oxidative and alkylating stress responses in the transcriptome presumably to restore normal cell function.
Assuntos
Metilação de DNA , Estresse Oxidativo/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Alquilação , Cromatografia Líquida , Radicais Livres/química , Células Hep G2 , Humanos , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Cyclosporine A (CsA) is an undecapeptide with strong immunosuppressant activities and is used a lot after organ transplantation. Furthermore, it may induce cholestasis in the liver. In general, the drug-induced cholestasis (DIC) pathway includes genes involved in the uptake, synthesis, conjugation, and secretion of bile acids. However, whether CsA-induced changes in the cholestasis pathway in vitro are persistent for repeated dose toxicity has not yet been investigated. To explore this, primary human hepatocytes (PHH) were exposed to a subcytotoxic dose of 30 µM CsA daily for 3 and 5 days. To investigate the persistence of induced changes upon terminating CsA exposure after 5 days, a subset of PHH was subjected to a washout period (WO-period) of 3 days. Multiple -omics analyses, comprising whole genome analysis of DNA methylation, gene expression, and microRNA expression, were performed. The CsA-treatment resulted after 3 and 5 days, respectively, in 476 and 20 differentially methylated genes (DMGs), 1353 and 1481 differentially expressed genes (DEGs), and in 22 and 29 differentially expressed microRNAs (DE-miRs). Cholestasis-related pathways appeared induced during CsA-treatment. Interestingly, 828 persistent DEGs and 6 persistent DE-miRs but no persistent DMGs were found after the WO-period. These persistent DEGs and DE-miRs showed concordance for 22 genes. Furthermore, 29 persistent DEGs changed into the same direction as observed in livers from cholestasis patients. None of those 29 DEGs which among others relate to oxidative stress and lipid metabolism are yet present in the DIC pathway or cholestasis adverse outcome pathway (AOP) thus presenting novel findings. In summary, we have demonstrated for the first time a persistent impact of repeated dose administration of CsA on genes and microRNAs related to DIC in the gold standard human liver in vitro model with PHH.
Assuntos
Colestase/induzido quimicamente , Ciclosporina/efeitos adversos , Genômica , Hepatócitos/metabolismo , Imunossupressores/efeitos adversos , Transcriptoma , Células Cultivadas , Metilação de DNA , Humanos , Análise de Sequência com Séries de OligonucleotídeosRESUMO
The well-defined battery of in vitro systems applied within chemical cancer risk assessment is often characterised by a high false-positive rate, thus repeatedly failing to correctly predict the in vivo genotoxic and carcinogenic properties of test compounds. Toxicogenomics, i.e. mRNA-profiling, has been proven successful in improving the prediction of genotoxicity in vivo and the understanding of underlying mechanisms. Recently, microRNAs have been discovered as post-transcriptional regulators of mRNAs. It is thus hypothesised that using microRNA response-patterns may further improve current prediction methods. This study aimed at predicting genotoxicity and non-genotoxic carcinogenicity in vivo, by comparing microRNA- and mRNA-based profiles, using a frequently applied in vitro liver model and exposing this to a range of well-chosen prototypical carcinogens. Primary mouse hepatocytes (PMH) were treated for 24 and 48h with 21 chemical compounds [genotoxins (GTX) vs. non-genotoxins (NGTX) and non-genotoxic carcinogens (NGTX-C) versus non-carcinogens (NC)]. MicroRNA and mRNA expression changes were analysed by means of Exiqon and Affymetrix microarray-platforms, respectively. Classification was performed by using Prediction Analysis for Microarrays (PAM). Compounds were randomly assigned to training and validation sets (repeated 10 times). Before prediction analysis, pre-selection of microRNAs and mRNAs was performed by using a leave-one-out t-test. No microRNAs could be identified that accurately predicted genotoxicity or non-genotoxic carcinogenicity in vivo. However, mRNAs could be detected which appeared reliable in predicting genotoxicity in vivo after 24h (7 genes) and 48h (2 genes) of exposure (accuracy: 90% and 93%, sensitivity: 65% and 75%, specificity: 100% and 100%). Tributylinoxide and para-Cresidine were misclassified. Also, mRNAs were identified capable of classifying NGTX-C after 24h (5 genes) as well as after 48h (3 genes) of treatment (accuracy: 78% and 88%, sensitivity: 83% and 83%, specificity: 75% and 93%). Wy-14,643, phenobarbital and ampicillin trihydrate were misclassified. We conclude that genotoxicity and non-genotoxic carcinogenicity probably cannot be accurately predicted based on microRNA profiles. Overall, transcript-based prediction analyses appeared to clearly outperform microRNA-based analyses.
Assuntos
Carcinógenos/toxicidade , Hepatócitos/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , Proteínas/efeitos dos fármacos , Toxicogenética/métodos , Transcriptoma , Animais , Carcinógenos/farmacologia , Hepatócitos/metabolismo , Masculino , Camundongos , MicroRNAs/genética , Testes de Mutagenicidade/métodos , Proteínas/genética , RNA Mensageiro/genética , Sensibilidade e EspecificidadeRESUMO
Acetaminophen (APAP) is a readily available over-the-counter drug and is one of the most commonly used analgesics/antipyretics worldwide. Large interindividual variation in susceptibility toward APAP-induced liver failure has been reported. However, the exact underlying factors causing this variability in susceptibility are still largely unknown. The aim of this study was to better understand this variability in response to APAP by evaluating interindividual differences in gene expression changes and APAP metabolite formation in primary human hepatocytes (PHH) from several donors (n = 5) exposed in vitro to a non-toxic to toxic APAP dose range. To evaluate interindividual variation, gene expression data/levels of metabolites were plotted against APAP dose/donor. The correlation in APAP dose response between donors was calculated by comparing data points from one donor to the data points of all other donors using a Pearson-based correlation analysis. From that, a correlation score/donor for each gene/metabolite was defined, representing the similarity of the omics response to APAP in PHH of a particular donor to all other donors. The top 1 % highest variable genes were selected for further evaluation using gene set overrepresentation analysis. The biological processes in which the genes with high interindividual variation in expression were involved include liver regeneration, inflammatory responses, mitochondrial stress responses, hepatocarcinogenesis, cell cycle, and drug efficacy. Additionally, the interindividual variation in the expression of these genes could be associated with the variability in expression levels of hydroxyl/methoxy-APAP and C8H13O5N-APAP-glucuronide. The before-mentioned metabolites or their derivatives have also been reported in blood of humans exposed to therapeutic APAP doses. Possibly these findings can contribute to elucidating the causative factors of interindividual susceptibility toward APAP.