Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(24): 243402, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181136

RESUMO

The ground-state phases of a quantum many-body system are characterized by an order parameter, which changes abruptly at quantum phase transitions when an external control parameter is varied. Interestingly, these concepts may be extended to excited states, for which it is possible to define equivalent excited-state quantum phase transitions. However, the experimental mapping of a phase diagram of excited quantum states has not yet been realized. Here we present the experimental determination of the excited-state phase diagram of an atomic ferromagnetic quantum gas, where, crucially, the excitation energy is one of the control parameters. The obtained phase diagram exemplifies how the extensive Hilbert state of quantum many-body systems can be structured by the measurement of well-defined order parameters.

2.
Phys Rev Lett ; 127(14): 140402, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34652182

RESUMO

Compared to light interferometers, the flux in cold-atom interferometers is low and the associated shot noise is large. Sensitivities beyond these limitations require the preparation of entangled atoms in different momentum modes. Here, we demonstrate a source of entangled atoms that is compatible with state-of-the-art interferometers. Entanglement is transferred from the spin degree of freedom of a Bose-Einstein condensate to well-separated momentum modes, witnessed by a squeezing parameter of -3.1(8) dB. Entanglement-enhanced atom interferometers promise unprecedented sensitivities for quantum gradiometers or gravitational wave detectors.

3.
Phys Rev Lett ; 123(26): 260403, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951461

RESUMO

Macroscopic superposition states enable fundamental tests of quantum mechanics and hold a huge potential in metrology, sensing, and other quantum technologies. We propose to generate macroscopic superposition states of a large number of atoms in the ground state of a spin-1 Bose-Einstein condensate. Measuring the number of particles in one mode prepares with large probability highly entangled macroscopic superposition states in the two remaining modes. The macroscopic superposition states are heralded by the measurement outcome. Our protocol is robust under realistic conditions in current experiments, including finite adiabaticity, particle loss, and measurement uncertainty.

4.
Phys Rev Lett ; 122(16): 163601, 2019 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-31075024

RESUMO

Fluctuations are a key property of both classical and quantum systems. While the fluctuations are well understood for many quantum systems at zero temperature, the case of an interacting quantum system at finite temperature still poses numerous challenges. Despite intense theoretical investigations of atom number fluctuations in Bose-Einstein condensates, their amplitude in experimentally relevant interacting systems is still not fully understood. Moreover, technical limitations have prevented their experimental investigation to date. Here we report the observation of these fluctuations. Our experiments are based on a stabilization technique, which allows for the preparation of ultracold thermal clouds at the shot noise level, thereby eliminating numerous technical noise sources. Furthermore, we make use of the correlations established by the evaporative cooling process to precisely determine the fluctuations and the sample temperature. This allows us to observe a telltale signature: the sudden increase in fluctuations of the condensate atom number close to the critical temperature.

5.
Phys Rev Lett ; 117(7): 073604, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27563964

RESUMO

We prepare number stabilized ultracold atom clouds through the real-time analysis of nondestructive images and the application of feedback. In our experiments, the atom number N∼10^{6} is determined by high precision Faraday imaging with uncertainty ΔN below the shot noise level, i.e., ΔN

6.
Phys Rev Lett ; 117(14): 143004, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27740781

RESUMO

Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10000 atoms by 2.05_{-0.37}^{+0.34} dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.

7.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38958512

RESUMO

At present, the best optical lattice clocks are based on the spectroscopy of trapped alkaline-earth-like atoms such as ytterbium and strontium. The development of mobile or even space-borne clocks necessitates concepts for the compact laser-cooling and trapping of these atoms with reduced laser requirements. Here, we present two compact and robust achromatic mirror structures for single-beam magneto-optical trapping of alkaline-earth-like atoms using two widely separated optical cooling frequencies. We have compared the trapping and cooling performance of a monolithic aluminum structure that generates a conventional trap geometry to a quasi-planar platform based on a periodic mirror structure for different isotopes of Yb. Compared to prior work with strontium in non-conventional traps, where only bosons were trapped on a narrow line transition, we demonstrate two-stage cooling and trapping of a fermionic alkaline-earth-like isotope in a single-beam quasi-planar structure.

8.
Phys Rev Lett ; 106(24): 240801, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21770559

RESUMO

Optically trapped ensembles are of crucial importance for frequency measurements and quantum memories but generally suffer from strong dephasing due to inhomogeneous density and light shifts. We demonstrate a drastic increase of the coherence time to 21 s on the magnetic field insensitive clock transition of (87)Rb by applying the recently discovered spin self-rephasing [C. Deutsch et al., Phys. Rev. Lett. 105, 020401 (2010)]. This result confirms the general nature of this new mechanism and thus shows its applicability in atom clocks and quantum memories. A systematic investigation of all relevant frequency shifts and noise contributions yields a stability of 2.4×10(-11)τ(-1/2), where τ is the integration time in seconds. Based on a set of technical improvements, the presented frequency standard is predicted to rival the stability of microwave fountain clocks in a potentially much more compact setup.

9.
Phys Rev Lett ; 104(19): 195303, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20866973

RESUMO

Parametric amplification of vacuum fluctuations is crucial in modern quantum optics, enabling the creation of squeezing and entanglement. We demonstrate the parametric amplification of vacuum fluctuations for matter waves using a spinor F=2 87Rb condensate. Interatomic interactions lead to correlated pair creation in the mF=±1 states from an initial mF=0 condensate, which acts as a vacuum for mF≠0. Although this pair creation from a pure mF=0 condensate is ideally triggered by vacuum fluctuations, unavoidable spurious initial mF=±1 atoms induce a classical seed which may become the dominant triggering mechanism. We show that pair creation is insensitive to a classical seed for sufficiently large magnetic fields, demonstrating the dominant role of vacuum fluctuations. The presented system thus provides a direct path towards the generation of nonclassical states of matter.

10.
Phys Rev Lett ; 105(13): 135302, 2010 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-21230785

RESUMO

Parametric amplification of quantum fluctuations constitutes a fundamental mechanism for spontaneous symmetry breaking. In our experiments, a spinor condensate acts as a parametric amplifier of spin modes, resulting in a twofold spontaneous breaking of spatial and spin symmetry in the amplified clouds. Our experiments permit a precise analysis of the amplification in specific spatial Bessel-like modes, allowing for the detailed understanding of the double symmetry breaking. On resonances that create vortex-antivortex superpositions, we show that the cylindrical spatial symmetry is spontaneously broken, but phase squeezing prevents spin-symmetry breaking. If, however, nondegenerate spin modes contribute to the amplification, quantum interferences lead to spin-dependent density profiles and hence spontaneously formed patterns in the longitudinal magnetization.

11.
Phys Rev Lett ; 103(19): 195302, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365935

RESUMO

We analyze the spinor dynamics of a 87Rb F=2 condensate initially prepared in the m(F) = 0 Zeeman sublevel. We show that this dynamics, characterized by the creation of correlated atomic pairs in m(F) = +/-1, presents an intriguing multiresonant magnetic-field dependence induced by the trap inhomogeneity. This dependence is directly linked to the most unstable Bogoliubov spin excitations of the initial m(F) = 0 condensate, showing that, in general, even a qualitative understanding of the pair-creation efficiency in a spinor condensate requires a careful consideration of the confinement.

12.
Nat Commun ; 6: 6811, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25869121

RESUMO

Quantum mechanics predicts that our physical reality is influenced by events that can potentially happen but factually do not occur. Interaction-free measurements (IFMs) exploit this counterintuitive influence to detect the presence of an object without requiring any interaction with it. Here we propose and realize an IFM concept based on an unstable many-particle system. In our experiments, we employ an ultracold gas in an unstable spin configuration, which can undergo a rapid decay. The object-realized by a laser beam-prevents this decay because of the indirect quantum Zeno effect and thus, its presence can be detected without interacting with a single atom. Contrary to existing proposals, our IFM does not require single-particle sources and is only weakly affected by losses and decoherence. We demonstrate confidence levels of 90%, well beyond previous optical experiments.

13.
Nat Commun ; 6: 8984, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26612105

RESUMO

In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology.

14.
Rev Sci Instrum ; 84(6): 063110, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23822336

RESUMO

Laser cooling of atoms usually necessitates several laser frequencies. Alkaline atoms, for example, are cooled by two lasers with a frequency difference in the gigahertz range. This gap cannot be closed with simple shifting techniques. Here, we present a method of generating sidebands at 6.6 GHz by modulating the current of a tapered amplifier, which is seeded by an unmodulated master laser. The sidebands enable trapping of 1.1 × 10(9) (87)Rb atoms in a chip-based magneto-optical trap. Compared to the direct modulation of the master laser, this method allows for an easy implementation, a fast adjustment over a wide frequency range, and the simultaneous extraction of unmodulated light for manipulation and detection. The low power consumption, small size, and applicability for multiple frequencies benefit a wide range of applications reaching from atom-based mobile sensors to the laser cooling of molecules.

15.
Science ; 334(6057): 773-6, 2011 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21998255

RESUMO

Interferometers with atomic ensembles are an integral part of modern precision metrology. However, these interferometers are fundamentally restricted by the shot noise limit, which can only be overcome by creating quantum entanglement among the atoms. We used spin dynamics in Bose-Einstein condensates to create large ensembles of up to 10(4) pair-correlated atoms with an interferometric sensitivity -1.61(-1.1)(+0.98) decibels beyond the shot noise limit. Our proof-of-principle results point the way toward a new generation of atom interferometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA