RESUMO
The rodent uterotrophic and Hershberger assays evaluate potential estrogenic and (anti)-androgenic effects, respectively. Both US EPA and OECD guidelines specify that test substance is administered daily either by subcutaneous injection or oral gavage. However, dietary administration is a relevant exposure route for agrochemical regulatory toxicology studies due to potential human intake via crop residues. In this study, equivalent doses of positive control chemicals administered via dietary and gavage routes of administration were compared in the uterotrophic (17α-ethinyl estradiol) and Hershberger (flutamide, linuron, dichloro-2,2-bis(4-chlorophenyl) ethane; 4,4'-DDE) assays in ovariectomized and castrated rats, respectively. For all positive control chemicals tested, statistically significant changes in organ weights and decreases in food consumption were observed by both routes of test substance administration. Decreased body weight gain observed for dietary linuron and 4,4'-DDE indicated that the maximum tolerated dose was exceeded. Hershberger dietary administration resulted in a similar blood exposure (AUC24) for each positive control chemical when compared to gavage. Overall, the correlation in organ weight changes for both the uterotrophic and Hershberger assays suggest that dietary administration is an acceptable route of exposure with similar sensitivity to oral gavage dosing for evaluation of the endocrine potential of a test substance and represents a more appropriate route of test substance administration for most environmental exposure scenarios.
Assuntos
Antagonistas de Androgênios/administração & dosagem , Estrogênios/administração & dosagem , Etinilestradiol/administração & dosagem , Genitália Masculina/efeitos dos fármacos , Útero/efeitos dos fármacos , Administração Oral , Antagonistas de Androgênios/farmacocinética , Antagonistas de Androgênios/toxicidade , Animais , Bioensaio/métodos , Dieta , Eugenol/administração & dosagem , Eugenol/análogos & derivados , Eugenol/farmacocinética , Eugenol/toxicidade , Feminino , Flutamida/administração & dosagem , Flutamida/farmacocinética , Flutamida/toxicidade , Genitália Masculina/crescimento & desenvolvimento , Linurona/administração & dosagem , Linurona/farmacocinética , Linurona/toxicidade , Masculino , Tamanho do Órgão/efeitos dos fármacos , Ratos , Útero/crescimento & desenvolvimentoRESUMO
Quantitative evidence is presented for the importance of alkyl peroxy photochemistry in the formation of secondary organic aerosol at 254 nm. Particles were generated by extensively oxidizing dodecanoic acid with photolytically generated hydroxyl radicals in a flow cell. The resulting particles were collected and analyzed for composition, which shows a lower contribution from multiply substituted parent molecules and much more decomposition product than expected from typical low-NOx oxidation mechanisms. Studies were performed at two separate reaction times, and kinetics modeling calculations were done using theoretical work from the combustion literature to estimate the branching of the photoexcited products. Extrapolation of the ethyl peroxy radical absorption spectrum compared to actinic flux measurements also shows that the alkyl peroxy radical absorption at â¼310 nm leads to photochemical lifetimes under pristine tropospheric conditions that are comparable to predicted lifetimes from peroxy-peroxy recombination reactions, particularly at higher altitudes.
RESUMO
In the nano-aerosol mass spectrometer, individual particles in the 10-30 nm size range are trapped and irradiated with a high pulse energy laser beam. The laser pulse generates a plasma that disintegrates the particle into atomic ions, from which the elemental composition is determined. Particle-to-particle variations among the mass spectra are shown to arise from plasma energetics: Low ionization energy species are enhanced in some spectra while high ionization energy species are enhanced in others. These variations also limit the accuracy and precision of elemental analysis, with higher deviations generally observed when low ionization energy species are dominant in the mass spectrum. For standard datasets generated from nominally identical particles, it is shown that that the error associated with composition measurement is random and that averaging the spectra from a few tens of particles is sufficient for measuring the mole fractions of common elements to within about 10% of the expected value. Averaging a greater number of particles offers limited improvement of the measurement precision but has the deleterious effect of degrading the measurement time-resolution, which is given by the time needed to obtain the required number of particle spectra for averaging. An internally mixed ambient particle dataset was found to give a similar result to the standard datasets, that is, the measured elemental composition converged to the average value after a few tens of particles were averaged.
RESUMO
Recent studies have shown that 254 nm light can be used to generate organic aerosol from iodoalkane/air mixtures via photodissociation of the C-I bond and subsequent oxidation of the alkyl radical. We examine organic aerosol formed from the 1-iodooctane photolysis at this wavelength using high-performance liquid chromatography (HPLC) with derivatization to selectively probe carbonyl- and hydroxyl-containing molecules. Tandem mass spectrometry reveals that the product distributions are much more complex than a traditional low-NOx peroxy-peroxy oxidation mechanism from a single parent isomer would justify. We propose that this difference is due to peroxy radical photochemistry, leading to two major channels: direct peroxy radical isomerization via internal H-abstraction and reverse dissociation to form alkyl radical and O2. The complexity of the product spectrum is derived from both scrambling of the radical site in the alkyl radical and the additional oxidation of otherwise stable peroxy radicals as a result of the isomerization. A branching ratio for these channels is estimated using a canonical representation of the internal energy distribution. Lifetime estimates using extrapolated ethyl peroxy absorption cross sections and the actinic flux near 310 nm show that peroxy radical photochemistry may play a role in defining the composition of atmospheric secondary organic aerosol formed in pristine (low-NOx) environments.
RESUMO
Numerous studies have shown that exposure to motor vehicle emissions increases the probability of heart attacks, asthma attacks, and hospital visits among at-risk individuals. However, while many studies have focused on measurements of ambient nanoparticles near highways, they have not focused on specific road-level domains, such as intersections near population centers. At these locations, very intense spikes in particle number concentration have been observed. These spikes have been linked to motor vehicle activity and have the potential to increase exposure dramatically. Characterizing both the contribution and composition of these spikes is critical in developing exposure models and abatement strategies. To determine the contribution of the particle spikes to the ambient number concentration, we implemented wavelet-based algorithms to isolate the particle spikes from measurements taken during the summer and winter of 2009 in Wilmington, Delaware, adjacent to a roadway intersection that approximately 28,000 vehicles pass through daily. These measurements included both number concentration and size distributions recorded once every second by a condensation particle counter (CPC*; TSI, Inc., St. Paul, MN) and a fast mobility particle sizer (FMPS). The high-frequency portion of the signal, consisting of a series of abrupt spikes in number concentration that varied in length from a few seconds to tens of seconds, accounted for 3% to 35% of the daily ambient number concentration, with spike contributions sometimes greater than 50% of hourly number concentrations. When the data were weighted by particle volume, this portion of the signal contributed an average of 10% to 20% to the daily concentration of particulate matter (PM) < or = 0.1 microm in aerodynamic diameter (PM0.1). The preferred locations for observing particle concentration spikes were those surrounding the measurement site at which motor vehicles accelerated after a red traffic light turned green. As the distance or transit time from emission to sampling increased, the size distribution shifted to a larger particle size, which confirmed the source assignments. To determine the distribution of emissions from individual vehicles, we correlated camera images with the spike contribution to particle number concentration at each time point. A small percentage of motor vehicles were found to emit a disproportionally large concentration of nanoparticles, and these high emitters included both spark-ignition (SI) and heavy-duty diesel (HDD) vehicles. In addition to characterizing the contribution of the spikes (local sources) to the ambient number concentration, we developed a method to determine the net contribution of motor vehicles (all sources) to the total mass concentration of ambient nanoparticles. To do this, we correlated the concentration of spikes with measurements of fast changes in the chemical composition of nanoparticles measured with the nano aerosol mass spectrometer (NAMS; built by the Johnston group). The NAMS irradiates individual, size-selected nanoparticles with a high-energy laser pulse to generate a mass spectrum consisting of multiply charged atomic ions. The elemental composition of each particle was determined from the ion signal intensities of each element. However, overlapping mass-to-charge ratios (m/z) at 4 m/z (O(+4) and C(+3)) and at 8 m/z (O(+2) and S(+4)) needed to be separated into their component ions to obtain a representative composition. To do this, we developed a method to deconvolute these ion signals using sucrose and ammonium sulfate [(NH4)2SO4] as calibration standards. With this approach, the differences between the expected and measured elemental mole fractions of carbon (C), oxygen (O), nitrogen (N), and sulfur (S) for a variety of test particles were generally much less than 10%. Ambient nanoparticles were found to consist mostly of C, O, N, and S. Many particles also contained silicon (Si). The elemental compositions were apportioned into molecular species that are commonly found in ambient aerosol: sulfate (SO4(2-)), nitrate (NO3-), ammonium (NH4+), carbonaceous matter, and when present, silicon dioxide (SiO2). Correlating NAMS chemical-composition measurements with spike contributions allowed for the development of a chemical profile representing motor vehicle emissions, which could be used to apportion their total contribution to the ambient nanoparticle mass. Particles originating from motor vehicles had compositions dominated by unoxidized carbonaceous matter, whereas non-motor vehicle particles consisted mostly of SO42-, NO3-, and oxidized carbonaceous matter. Motor vehicles were found to contribute up to 48% and 60% of the nanoparticle mass and number concentrations, respectively, in the winter measurement period, but only 16% and 49% of the nanoparticle mass and number concentrations, respectively, in the summer period. Chemical-composition profiles and contributions of SI versus HDD vehicles to the nanoparticle mass concentration were estimated by correlating still camera images, chemical composition, and spike contributions at each time point. The total mass contributions from SI and HDD vehicles were roughly equal, but the uncertainty in the split was large. The results of this study suggest that nanoparticle concentrations will be higher adjacent to an intersection than along the same roadway but further from an intersection. Possible ways to reduce the motor vehicle contribution to ambient nanoparticulate matter include minimizing stop-and-go activity at an intersection (i.e., vehicles accelerating after a red light turns green) and identifying the small fraction of motor vehicles that emit a disproportionally large number of nanoparticles.
Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Exposição por Inalação/análise , Veículos Automotores , Nanopartículas/análise , Emissões de Veículos/análise , Humanos , Exposição por Inalação/estatística & dados numéricos , Espectrometria de Massas , Tamanho da Partícula , Estações do Ano , Fatores de Tempo , Tempo (Meteorologia)RESUMO
The nano aerosol mass spectrometer provides a quantitative measure of the elemental composition of individual, ambient nanoparticles in the 10-30 nm size range. In this work, carbon mole fraction plots are introduced as an efficient means of visualizing the full range of particle compositions in an ambient data set. These plots are constructed by plotting the composition of each particle in the data set, beginning with the particle having the highest carbon mole fraction and ending with the particle having the lowest carbon mole fraction. The method relies on the observation that the carbon content of an ambient particle is generally anticorrelated with oxygen, nitrogen, and sulfur. Carbon mole fraction plots allow internal vs external mixing of particle compositions to be assessed, and they provide a means of exploring the relationship between the oxidation of carbonaceous matter and the presence of inorganic species in a particle. It is shown that unoxidized carbonaceous matter exists primarily as externally mixed particles, whereas oxidized carbonaceous matter is found only in particles that also contain a significant amount of inorganic species. Particles containing oxidized carbonaceous matter are generally neutralized, whereas particles containing unoxidized carbonaceous matter or no carbon at all are acidic. Carbon mole fraction plots show how factor analysis methods such as the Adaptive Resonance Theory-2a algorithm (ART-2a) and positive matrix factorization partition a continuum of particle compositions into a few fixed composition profiles, and they provide a simple way to characterize how ambient particle compositions change with season and/or location.
RESUMO
High frequency spikes in ultrafine number concentration near a roadway intersection arise from motor vehicles that accelerate after a red light turns green. The present work describes a method to determine the contribution of motor vehicles to the total ambient ultrafine particle mass by correlating these number concentration spikes with fast changes in ultrafine particle chemical composition measured with the nano aerosol mass spectrometer, NAMS. Measurements were performed at an urban air quality monitoring site in Wilmington, Delaware during the summer and winter of 2009. Motor vehicles were found to contribute 48% of the ultrafine particle mass in the winter measurement period, but only 16% of the ultrafine particle mass in the summer period. Chemical composition profiles and contributions to the ultrafine particle mass of spark vs diesel vehicles were estimated by correlating still camera images, chemical composition and spike contribution at each time interval.. The spark and diesel contributions were roughly equal, but the uncertainty in the split was large. The distribution of emissions from individual vehicles was determined by correlating camera images with the spike contribution to particle number concentration at each time interval. A small percentage of motor vehicles were found to emit a disproportionally large concentration of ultrafine particles, and these high emitters included both spark ignition and diesel vehicles.
Assuntos
Modelos Teóricos , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise , Delaware , Espectrometria de Massas/métodos , Tamanho da PartículaRESUMO
A wavelet-based algorithm was implemented to separate the high frequency portion of ambient nanoparticle measurements taken during the summer and winter of 2009 in Wilmington, Delaware. These measurements included both number concentration and size distributions recorded once every second by a condensation particle counter (CPC) and a fast mobility particle sizer (FMPS). The high frequency portion of the signal, consisting of a series of abrupt spikes in number concentration that varied in length from a few seconds to tens of seconds, accounted for 6-35% of the daily ambient number concentration with hourly contributions sometimes greater than 50%. When the data were weighted by particle volume, this portion of the signal contributed an average of 20% to the daily PM(0.1) concentration. Particle concentration spikes were preferentially observed from locations surrounding the measurement site where motor vehicles accelerate after a red traffic light turns green. As the distance or transit time from emission to sampling increased, the size distribution shifted to larger particle diameters.