Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Appl Physiol ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762834

RESUMO

BACKGROUND: Motor unit (MU) activation during maximal contractions is lower in children compared with adults. Among adults, discrete MU activation differs, depending on the rate of contraction. We investigated the effect of contraction rate on discrete MU activation in boys and men. METHODS: Following a habituation session, 14 boys and 20 men completed two experimental sessions for knee extension and wrist flexion, in random order. Maximal voluntary isometric torque (MVIC) was determined before completing trapezoidal isometric contractions (70%MVIC) at low (10%MVIC/s) and high (35%MVIC/s) contraction rates. Surface electromyography was captured from the vastus lateralis (VL) and flexor carpi radialis (FCR) and decomposed into individual MU action potential (MUAP) trains. RESULTS: In both groups and muscles, the initial MU firing rate (MUFR) was greater (p < 0.05) at high compared with low contraction rates. The increase in initial MUFR at the fast contraction in the VL was greater in men than boys (p < 0.05). Mean MUFR was significantly lower during fast contractions only in the FCR (p < 0.05). In both groups and muscles, the rate of decay of MUFR with increasing MUAP amplitude was less steep (p < 0.05) during fast compared with slow contractions. CONCLUSION: In both groups and muscles, initial MUFRs, as well as MUFRs of large MUs were higher during fast compared with slow contractions. However, in the VL, the increase in initial MUFR was greater in men compared with boys. This suggests that in large muscles, men may rely more on increasing MUFR to generate torque at faster rates compared with boys.

2.
Eur J Appl Physiol ; 124(6): 1933-1942, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38285213

RESUMO

BACKGROUND: Lower activation of higher threshold (type-II) motor units (MUs) has been suggested in children compared with adults. We examined child-adult differences in discrete MU activation of the flexor carpi radialis (FCR). METHODS: Fifteen boys (10.2 ± 1.4 years), and 17 men (25.0 ± 2.7 years) completed 2 laboratory sessions. Following a habituation session, maximal voluntary isometric wrist flexion torque (MVIC) was determined before completing trapezoidal isometric contractions at 70%MVIC. Surface electromyography was captured by Delsys Trigno Galileo sensors and decomposed into individual MU action potential trains. Recruitment threshold (RT), and MU firing rates (MUFR) were calculated. RESULTS: MVIC was significantly greater in men (10.19 ± 1.92 Nm) than in boys (4.33 ± 1.47 Nm) (p < 0.05), but not statistically different after accounting for differences in body size. Mean MUFR was not different between boys (17.41 ± 7.83 pps) and men (17.47 ± 7.64 pps). However, the MUFR-RT slope was significantly (p < 0.05) steeper (more negative) in boys, reflecting a progressively greater decrease in MUFR with increasing RT. Additionally, boys recruited more of their MUs early in the ramped contraction. CONCLUSION: Compared with men, boys tended to recruit their MUs earlier and at a lower percentage of MVIC. This difference in MU recruitment may explain the greater decrease in MUFR with increasing RT in boys compared with men. Overall, these findings suggest an age-related difference in the neural strategy used to develop moderate-high torque in wrist flexors, where boys recruit more of their MUs earlier in the force gradation process, possibly resulting in a narrower recruitment range.


Assuntos
Contração Isométrica , Músculo Esquelético , Recrutamento Neurofisiológico , Humanos , Masculino , Músculo Esquelético/fisiologia , Criança , Adulto , Contração Isométrica/fisiologia , Recrutamento Neurofisiológico/fisiologia , Eletromiografia/métodos , Neurônios Motores/fisiologia , Torque
3.
Appl Physiol Nutr Metab ; 49(7): 904-919, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471135

RESUMO

Using global surface electromyography (sEMG) and the sEMG threshold it has been suggested that children activate their type-II motor unit (MU) to a lesser extent compared with adults. However, when age-related differences in discrete MU activation are examined using sEMG decomposition this phenomenon is not observed. Furthermore, findings from these studies are inconsistent and conflicting. Therefore, the purpose of this study was to examine differences in discrete MU activation of the vastus lateralis (VL) between boys and men during moderate-intensity knee extensions. Seventeen boys and 20 men completed two laboratory sessions. Following a habituation session, maximal voluntary isometric knee extension (MVIC) torque was determined before completing trapezoidal contractions at 70% MVIC. sEMG of the VL was captured and mathematically decomposed into individual MU action potential trains. Motor unit action potential amplitude (MUAPamp), recruitment threshold (RT), and MU firing rates (MUFR) were calculated. We observed that MUAPamp-RT slope was steeper in men compared with boys (p < 0.05) even after accounting for fat thickness and quadriceps muscle depth. The mean MUFR and y-intercept of the MUFR-RT relationship were significantly (p < 0.001) lower in boys than in men. The slope of the MUFR-RT relationship tended to be steeper in men, but the differences did not reach statistical significance (p = 0.056). Overall, our results suggest that neural strategies used to produce torque are different among boys and men. Such differences may be related, in part, to boys' lower MUFR and lesser ability to activate their higher-threshold MUs. Although, other factors (e.g., muscle composition) likely also play a role.


Assuntos
Eletromiografia , Contração Isométrica , Neurônios Motores , Músculo Quadríceps , Humanos , Masculino , Criança , Músculo Quadríceps/fisiologia , Adulto Jovem , Adulto , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Recrutamento Neurofisiológico/fisiologia , Torque , Potenciais de Ação/fisiologia , Músculo Esquelético/fisiologia , Adolescente , Fatores Etários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA