Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Tissue Barriers ; : 2347062, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721756

RESUMO

Small extracellular vesicles (sEVs) are an important part of intercellular communication. They are phospholipid bilayer particles that carry active biomolecules such as proteins, various nucleic acids, and lipids. In recipient cells, sEVs can alter cellular functions, including cancer development and premetastatic niche formation in distant organs. Moreover, sEVs can carry cancer-specific features, which makes them promising biomarker candidates. However, the interactions of sEVs with biological barriers and consequences thereof, are not clarified yet. The blood-saliva barrier is crucial for preventing the entry of pathogens and (in)organic substances into the bloodstream, as well as molecule filtration from blood to saliva. The effects of brain derived DU145 prostate cancer (PCa) sEVs on a human submandibular salivary gland barrier (SSGB) in vitro were investigated. Small EVs were harvested from normoxic (N, atmospheric O2) or hypoxic (H, 1% O2) conditions, fluorescently labeled with CellTrackerTM Orange and thoroughly characterized. HTB-41 B2 cells were used as SSGB model cultured on 24-well ThinCert® inserts. After model optimization indicating effects of serum and serum-sEVs on barrier properties, PCa sEVs were applied to the basolateral (blood) side in either 10% serum, or serum-free conditions, and barrier integrity was continuously monitored for 40 hours. This study found that H and N PCa sEVs were uptaken by the SSGB in vitro model in similar quantities regardless of the media composition in the basolateral compartment. Permeation of fluorescent PCa sEVs into the apical compartment was not detectable with the applied methods. However, treatment with H and N sEVs under different serum conditions revealed distinct molecular clusters after hierarchical analysis of mRNA data measured by high-throughput qPCR, which were partly reflected at the protein level. For example, serum-reduction dependent decrease of barrier properties was accompanied with the decrease of CDH1 or Claudin-7 expression. Interestingly, the presence of H sEVs significantly increased the number of sEV-sized particles in the apical compartment of the SSGB model compared to basolaterally added N sEVs. This functional effect on the number of particles in the saliva (apical) compartment induced by different sEVs applied in the blood (basolateral) compartment might be a new approach to understand one possible mechanism how differences of salivary EVs might occur which then could be used as biomarker.

2.
FEBS J ; 289(4): 1062-1079, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34626084

RESUMO

Brain homeostasis depends on the existence of the blood-brain barrier (BBB). Despite decades of research, the factors and signalling pathways for modulating and maintaining BBB integrity are not fully elucidated. Here, we characterise the expression and function of the multifunctional receptor, sortilin, in the cells of the BBB, in vivo and in vitro. We show that sortilin acts as an important regulatory protein of the BBB's tightness. In rats lacking sortilin, the BBB was leaky, which correlated well with relocated distribution of the localisation of zonula occludens-1, VE-cadherin and ß-catenin junctional proteins. Furthermore, the absence of sortilin in brain endothelial cells resulted in decreased phosphorylation of Akt signalling protein and increased the level of phospho-ERK1/2. As a putative result of MAPK/ERK pathway activity, the junctions between the brain endothelial cells were disintegrated and the integrity of the BBB became compromised. The identified barrier differences between wild-type and Sort1-/- brain endothelial cells can pave the way for a better understanding of sortilin's role in the healthy and diseased BBB.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/deficiência , Animais , Células Cultivadas , Ratos , Ratos Sprague-Dawley
3.
Front Immunol ; 12: 730088, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484241

RESUMO

In December 2019, a new viral disease emerged and quickly spread all around the world. In March 2020, the COVID-19 outbreak was classified as a global pandemic and by June 2021, the number of infected people grew to over 170 million. Along with the patients' mild-to-severe respiratory symptoms, reports on probable central nervous system (CNS) effects appeared shortly, raising concerns about the possible long-term detrimental effects on human cognition. It remains unresolved whether the neurological symptoms are caused directly by the SARS-CoV-2 infiltration in the brain, indirectly by secondary immune effects of a cytokine storm and antibody overproduction, or as a consequence of systemic hypoxia-mediated microglia activation. In severe COVID-19 cases with impaired lung capacity, hypoxia is an anticipated subsidiary event that can cause progressive and irreversible damage to neurons. To resolve this problem, intensive research is currently ongoing, which seeks to evaluate the SARS-CoV-2 virus' neuroinvasive potential and the examination of the antibody and autoantibody generation upon infection, as well as the effects of prolonged systemic hypoxia on the CNS. In this review, we summarize the current research on the possible interplay of the SARS-CoV-2 effects on the lung, especially on alveolar macrophages and direct and indirect effects on the brain, with special emphasis on microglia, as a possible culprit of neurological manifestation during COVID-19.


Assuntos
COVID-19/complicações , Infecções do Sistema Nervoso Central/complicações , Infecções do Sistema Nervoso Central/virologia , Pulmão/virologia , SARS-CoV-2/patogenicidade , COVID-19/imunologia , Síndrome da Liberação de Citocina/complicações , Síndrome da Liberação de Citocina/imunologia , Humanos , Pulmão/imunologia , Microglia/imunologia , Microglia/patologia , Microglia/virologia , Doenças do Sistema Nervoso/virologia , SARS-CoV-2/imunologia
4.
Biochim Biophys Acta Biomembr ; 1861(9): 1579-1591, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301276

RESUMO

The surface charge of brain endothelial cells forming the blood-brain barrier (BBB) is highly negative due to phospholipids in the plasma membrane and the glycocalyx. This negative charge is an important element of the defense systems of the BBB. Lidocaine, a cationic and lipophilic molecule which has anaesthetic and antiarrhytmic properties, exerts its actions by interacting with lipid membranes. Lidocaine when administered intravenously acts on vascular endothelial cells, but its direct effect on brain endothelial cells has not yet been studied. Our aim was to measure the effect of lidocaine on the charge of biological membranes and the barrier function of brain endothelial cells. We used the simplified membrane model, the bacteriorhodopsin (bR) containing purple membrane of Halobacterium salinarum and culture models of the BBB. We found that lidocaine turns the negative surface charge of purple membrane more positive and restores the function of the proton pump bR. Lidocaine also changed the zeta potential of brain endothelial cells in the same way. Short-term lidocaine treatment at a 10 µM therapeutically relevant concentration did not cause major BBB barrier dysfunction, substantial change in cell morphology or P-glycoprotein efflux pump inhibition. Lidocaine treatment decreased the flux of a cationic lipophilic molecule across the cell layer, but had no effect on the penetration of hydrophilic neutral or negatively charged markers. Our observations help to understand the biophysical background of the effect of lidocaine on biological membranes and draws the attention to the interaction of cationic drug molecules at the level of the BBB.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Lidocaína/metabolismo , Lidocaína/farmacologia , Animais , Astrócitos/metabolismo , Transporte Biológico , Encéfalo/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Células Endoteliais , Feminino , Humanos , Masculino , Células PC-3 , Permeabilidade , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA