Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 628(8009): 752-757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622268

RESUMO

In recent years, the stacking and twisting of atom-thin structures with matching crystal symmetry has provided a unique way to create new superlattice structures in which new properties emerge1,2. In parallel, control over the temporal characteristics of strong light fields has allowed researchers to manipulate coherent electron transport in such atom-thin structures on sublaser-cycle timescales3,4. Here we demonstrate a tailored light-wave-driven analogue to twisted layer stacking. Tailoring the spatial symmetry of the light waveform to that of the lattice of a hexagonal boron nitride monolayer and then twisting this waveform result in optical control of time-reversal symmetry breaking5 and the realization of the topological Haldane model6 in a laser-dressed two-dimensional insulating crystal. Further, the parameters of the effective Haldane-type Hamiltonian can be controlled by rotating the light waveform, thus enabling ultrafast switching between band structure configurations and allowing unprecedented control over the magnitude, location and curvature of the bandgap. This results in an asymmetric population between complementary quantum valleys that leads to a measurable valley Hall current7, which can be detected by optical harmonic polarimetry. The universality and robustness of our scheme paves the way to valley-selective bandgap engineering on the fly and unlocks the possibility of creating few-femtosecond switches with quantum degrees of freedom.

2.
Nano Lett ; 24(18): 5506-5512, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38530705

RESUMO

The response of metal nanostructures to optical excitation leads to localized surface plasmon (LSP) generation with nanoscale field confinement driving applications in, for example, quantum optics and nanophotonics. Field sampling in the terahertz domain has had a tremendous impact on the ability to trace such collective excitations. Here, we extend such capabilities and introduce direct sampling of LSPs in a more relevant petahertz domain. The method allows to measure the LSP field in arbitrary nanostructures with subcycle precision. We demonstrate the technique for colloidal nanoparticles and compare the results to finite-difference time-domain calculations, which show that the build-up and dephasing of the plasmonic excitation can be resolved. Furthermore, we observe a reshaping of the spectral phase of the few-cycle pulse, and we demonstrate ad-hoc pulse shaping by tailoring the plasmonic sample. The methodology can be extended to single nanosystems and applied in exploring subcycle, attosecond phenomena.

3.
Opt Express ; 32(2): 1151-1160, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38297673

RESUMO

Accurate estimation of the duration of soft-x-ray pulses from high-harmonic generation (HHG) remains challenging given their higher photon energies and broad spectral bandwidth. The carrier-envelope-phase (CEP) dependence of generated soft-x-ray spectra is indicative of attosecond pulse generation, but advanced simulations are needed to infer the pulse duration from such data. Here, we employ macroscopic propagation simulations to reproduce experimental polarization-gated CEP-dependent soft-x-ray spectra. The simulations indicate chirped pulses, which we theoretically find to be compressible in hydrogen plasmas, suggesting this as a viable compression scheme for broadband soft-x-rays from HHG.

4.
Opt Express ; 31(15): 24821-24834, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475300

RESUMO

We demonstrate a mid-infrared optical parametric chirped pulse amplifier (OPCPA), delivering 2.1 µm center wavelength pulses with 20 fs duration and 4.9 mJ energy at 10 kHz repetition rate. This self-seeded system is based on a kW-class Yb:YAG thin-disk amplifier driving a CEP stable short-wavelength-infrared (SWIR) generation and three consecutive OPCPA stages. Our SWIR source achieves an average power of 49 W, while still maintaining excellent phase and average power stability with sub-100 mrad carrier-envelope-phase-noise and 0.8% average power fluctuations. These parameters enable the OPCPA setup to drive attosecond pump probe spectroscopy experiments with photon energies in the water window.

5.
Phys Rev Lett ; 130(10): 106204, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36962055

RESUMO

Single-molecule electron sources of fullerenes driven via constant electric fields, approximately 1 nm in size, produce peculiar emission patterns, such as a cross or a two-leaf pattern. By illuminating the electron sources with femtosecond light pulses, we discovered that largely modulated emission patterns appeared from single molecules. Our simulations revealed that emission patterns, which have been an intractable question for over seven decades, represent single-molecule molecular orbitals. Furthermore, the observed modulations originated from variations of single-molecule molecular orbitals, practically achieving the subnanometric optical modulation of an electron source.

6.
Opt Express ; 30(18): 32074-32083, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242276

RESUMO

We report a novel one-coating-run method for producing an octave-spanning complementary dispersive mirror (DM) pair. The anti-phase group delay dispersion (GDD) oscillations are realized by two mirrors of the DM pair due to the certain thickness difference. Both mirrors are deposited within a single coating run enabled by the non-uniformity of the ion beam sputtering coating plant, which is obtained by tuning the distance between the source target and coating substrates. Since the DM pair is produced in a single deposition run, the GDD performance is more robust against deposition errors than that of the conventional complementary DM pair, in which two separated coating runs are necessary. Moreover, the new DM pair is compatible for both laser polarizations under the same angle of incidence, which could effectively reduce the difficulties of alignment for their implementation in laser systems than the double angle DM pair. The new DM pair is successfully applied to compress pulses from a Ti: Sapphire laser system down to 4.26 fs in pulse duration.

7.
Opt Lett ; 46(21): 5304-5307, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724461

RESUMO

We demonstrate an efficient hybrid-scheme for nonlinear pulse compression of high-power thin-disk oscillator pulses to the sub-10 fs regime. The output of a home-built, 16 MHz, 84 W, 220 fs Yb:YAG thin-disk oscillator at 1030 nm is first compressed to 17 fs in two nonlinear multipass cells. In a third stage, based on multiple thin sapphire plates, further compression to 8.5 fs with 55 W output power and an overall optical efficiency of 65% is achieved. Ultrabroadband mid-infrared pulses covering the spectral range 2.4-8µm were generated from these compressed pulses by intra-pulse difference frequency generation.

8.
Phys Chem Chem Phys ; 22(5): 2704-2712, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31793561

RESUMO

The recent demonstration of isolated attosecond pulses from an X-ray free-electron laser (XFEL) opens the possibility for probing ultrafast electron dynamics at X-ray wavelengths. An established experimental method for probing ultrafast dynamics is X-ray transient absorption spectroscopy, where the X-ray absorption spectrum is measured by scanning the central photon energy and recording the resultant photoproducts. The spectral bandwidth inherent to attosecond pulses is wide compared to the resonant features typically probed, which generally precludes the application of this technique in the attosecond regime. In this paper we propose and demonstrate a new technique to conduct transient absorption spectroscopy with broad bandwidth attosecond pulses with the aid of ghost imaging, recovering sub-bandwidth resolution in photoproduct-based absorption measurements.

9.
Opt Express ; 27(19): 27124-27135, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674579

RESUMO

We present the results of a systematic study of photoelectron emission from isolated dielectric nanoparticles (SiO2) irradiated by intense 25 fs, 780 nm linearly polarized laser pulses as a function of particle size (20 nm to 750 nm in diameter) and laser intensity. We also introduce an experimental technique to reduce the effects of focal volume averaging. The highest photoelectron energies show a strong size dependence, increasing by a factor of six over the range of particles sizes studied at a fixed intensity. For smaller particle sizes (up to 200 nm), our findings agree well with earlier results obtained with few-cycle, ∼4 fs pulses. For large nanoparticles, which exhibit stronger near-field localization due to field-propagation effects, we observe the emission of much more energetic electrons, reaching energies up to ∼200 times the ponderomotive energy. This strong deviation in maximum photoelectron energy is attributed to the increase in ionization and charge interaction for many-cycle pulses at similar intensities.

10.
Phys Rev Lett ; 122(5): 053002, 2019 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-30822022

RESUMO

Theoretical studies indicated that C_{60} exposed to linearly polarized intense infrared pulses undergoes periodic cage structural distortions with typical periods around 100 fs (1 fs=10^{-15} s). Here, we use the laser-driven self-imaging electron diffraction technique, previously developed for atoms and small molecules, to measure laser-induced deformation of C_{60} in an intense 3.6 µm laser field. A prolate molecular elongation along the laser polarization axis is determined to be (6.1±1.4)% via both angular- and energy-resolved measurements of electrons that are released, driven back, and diffracted from the molecule within the same laser field. The observed deformation is confirmed by density functional theory simulations of nuclear dynamics on time-dependent adiabatic states and indicates a nonadiabatic excitation of the h_{g}(1) prolate-oblate mode. The results demonstrate the applicability of laser-driven electron diffraction methods for studying macromolecular structural dynamics in four dimensions with atomic time and spatial resolutions.

11.
Opt Express ; 24(9): 9218-23, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137538

RESUMO

A novel concept for octave spanning dispersive mirrors with low spectral dispersion oscillations is presented. The key element of the so-called wedge dispersive mirror is a slightly wedged layer which is coated on a specially optimized dispersive multilayer stack by a common sputter coating process. The group delay dispersion (GDD) of a pulse reflected on a wedge dispersive mirror is nearly free of oscillations. Fabricated mirrors with negative GDD demonstrate the compression of a pulse down to 3.8 fs as good as double angled mirrors optimized for the same bandwidth.

12.
Faraday Discuss ; 194: 495-508, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27711784

RESUMO

The migration of hydrogen atoms resulting in the isomerization of hydrocarbons is an important process which can occur on ultrafast timescales. Here, we visualize the light-induced hydrogen migration of acetylene to vinylidene in an ionic state using two synchronized 4 fs intense laser pulses. The first pulse induces hydrogen migration, and the second is used for monitoring transient structural changes via Coulomb explosion imaging. Varying the time delay between the pulses reveals the migration dynamics with a time constant of 54 ± 4 fs as observed in the H+ + H+ + CC+ channel. Due to the high temporal resolution, vibrational wave-packet motions along the CC- and CH-bonds are observed. Even though a maximum in isomerization yield for kinetic energy releases above 16 eV is measured, we find no indication for a backwards isomerization - in contrast to previous measurements. Here, we propose an alternative explanation for the maximum in isomerization yield, namely the surpassing of the transition state to the vinylidene configuration within the excited dication state.

13.
Nature ; 466(7307): 739-43, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20686571

RESUMO

The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes.

14.
Opt Express ; 23(4): 4563-72, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836493

RESUMO

We demonstrate a chirped-pulse-amplified Ti:Sapphire laser system operating at 1 kHz, with 20 mJ pulse energy, 26 femtosecond pulse duration (0.77 terawatt), and excellent long term carrier-envelope-phase (CEP) stability. A new vibrational damping technique is implemented to significantly reduce vibrational noise on both the laser stretcher and compressor, thus enabling a single-shot CEP noise value of 250 mrad RMS over 1 hour and 300 mrad RMS over 9 hours. This is, to the best of our knowledge, the best long term CEP noise ever reported for any terawatt class laser. This laser is also used to pump a white-light-seeded optical parametric amplifier, producing 6 mJ of total energy in the signal and idler with 18 mJ of pumping energy. Due to preservation of the CEP in the white-light generated signal and passive CEP stability in the idler, this laser system promises synthesized laser pulses spanning multi-octaves of bandwidth at an unprecedented energy scale.

15.
Opt Express ; 22(4): 4235-46, 2014 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-24663747

RESUMO

Ultrashort, intense light pulses permit the study of nanomaterials in the optical non-linear regime. Non-linear regimes are often present just below the damage threshold thus requiring careful tuning of the laser parameters to avoid melting the materials. Detailed studies of the damage threshold of nanoscale materials are therefore needed. We present results on the damage threshold of gold (Au) nanowires when illuminated by intense femtosecond pulses. These nanowires were synthesized via the directed electrochemical nanowire assembly (DENA) process in two configurations: (1) free-standing Au nanowires on tungsten (W) electrodes and (2) Au nanowires attached to fused silica slides. In both cases the wires have a single-crystalline structure. For 790 nm laser pulses with durations of 108 fs and 32 fs at a repetition rate of 2 kHz, we find that the free-standing nanowires melt at intensities close to 3 TW/cm2 (194 mJ/cm2) and 7.5 TW/cm2 (144 mJ/cm2), respectively. The Au nanowires attached to silica slides melt at slightly higher intensities, just above 10 TW/cm2 (192 mJ/cm2) for 32 fs pulses. Our results can be explained with an electron-phonon interaction model that describes the absorbed laser energy and subsequent heat conduction across the wire.

16.
Opt Express ; 21(2): 2195-205, 2013 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-23389200

RESUMO

Coherent XUV sources, which may operate at MHz repetition rate, could find applications in high-precision spectroscopy and for spatio-time-resolved measurements of collective electron dynamics on nanostructured surfaces. We theoretically investigate utilizing the enhanced plasmonic fields in an ordered array of gold nanoparticles for the generation of high-harmonic, extreme-ultraviolet (XUV) radiation. By optimization of the chirp of ultrashort laser pulses incident on the array, our simulations indicate a potential route towards the temporal shaping of the plasmonic near-field and, in turn, the generation of single attosecond pulses. The inherent effects of inhomogeneity of the local fields on the high-harmonic generation are analyzed and discussed. While taking the inhomogeneity into account does not affect the optimal chirp for the generation of a single attosecond pulse, the cut-off energy of the high-harmonic spectrum is enhanced by about a factor of two.


Assuntos
Ouro/química , Lasers , Iluminação/métodos , Nanopartículas Metálicas/química , Ressonância de Plasmônio de Superfície/métodos , Ouro/efeitos da radiação , Teste de Materiais , Nanopartículas Metálicas/efeitos da radiação , Espalhamento de Radiação
17.
Phys Rev Lett ; 110(22): 223903, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767726

RESUMO

A compact high repetition rate attosecond light source based on a standard laser oscillator combined with plasmonic enhancement is analyzed. At repetition rates of tens of MHz, we predict focusable pulses with durations of ≲300 as and a spherical wave front at collimation angles ≲5°. Plasmonic mode and guiding of the attosecond radiation determine the beam parameters. The beam is robust with respect to variations of driver pulse focus and duration.

18.
Phys Chem Chem Phys ; 15(24): 9448-67, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23695586

RESUMO

We review recent progress in the control over chemical reactions by employing tailored electric field waveforms of intense laser pulses. The sub-cycle tailoring of such waveforms permits the control of electron dynamics in molecules on sub-femtosecond timescales. We show that laser-driven electron dynamics in molecules has the potential to control chemical reactions. In the presence of strong fields, electron and nuclear motion are coupled, requiring models beyond the Born-Oppenheimer approximation for their theoretical treatment. Various mechanisms for the lightwave control of molecular reactions are described, and their relevance for the control of diatomic molecular reactions is discussed. Rapid experimental and theoretical progress is currently being made, indicating that attosecond controlled chemistry is within reach.

19.
Sci Rep ; 12(1): 2714, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177727

RESUMO

Applying strong direct current (DC) electric fields on the apex of a sharp metallic tip, electrons can be radially emitted from the apex to vacuum. Subsequently, they magnify the nanoscopic information on the apex, which serves as a field emission microscope (FEM). When depositing molecules on such a tip, peculiar electron emission patterns such as clover leaves appear. These phenomena were first observed seventy years ago. However, the source of these emission patterns has not yet been identified owing to the limited experimental information about molecular configurations on a tip. Here, we used fullerene molecules and characterized the molecule-covered tip by an FEM. In addition to the experiments, simulations were performed to obtain optimized molecular configurations on a tip. Both results indicate that the molecules, the source of the peculiar emission patterns, appear on a molecule layer formed on the tip under strong DC electric fields. Furthermore, the simulations revealed that these molecules are mostly isolated single molecules forming single-molecule-terminated protrusions. Upon the excellent agreements in both results, we concluded that each emission pattern originates from a single molecule. Our work should pave the way to revive old-fashioned electron microscopy as a powerful tool for investigating a single molecule.

20.
Nat Commun ; 13(1): 1111, 2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236857

RESUMO

The measurement and control of light field oscillations enable the study of ultrafast phenomena on sub-cycle time scales. Electro-optic sampling (EOS) is a powerful field characterization approach, in terms of both sensitivity and dynamic range, but it has not reached beyond infrared frequencies. Here, we show the synthesis of a sub-cycle infrared-visible pulse and subsequent complete electric field characterization using EOS. The sampled bandwidth spans from 700 nm to 2700 nm (428 to 110 THz). Tailored electric-field waveforms are generated with a two-channel field synthesizer in the infrared-visible range, with a full-width at half-maximum duration as short as 3.8 fs at a central wavelength of 1.7 µm (176 THz). EOS detection of the complete bandwidth of these waveforms extends it into the visible spectral range. To demonstrate the power of our approach, we use the sub-cycle transients to inject carriers in a thin quartz sample for nonlinear photoconductive field sampling with sub-femtosecond resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA