Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci Res ; 89(12): 1913-25, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21910135

RESUMO

Glucose is the primary metabolic fuel for the mammalian brain, and a continuous supply is required to maintain normal CNS function. The transport of glucose across the blood-brain barrier (BBB) into the brain is mediated by the facilitative glucose transporter GLUT-1. Prior studies (Simpson et al. [2001] J Biol Chem 276:12725-12729) had revealed that the conformations of the GLUT-1 transporter were different in luminal (blood facing) and abluminal (brain facing) membranes of bovine cerebral endothelial cells, based on differential antibody recognition. This study has extended these observations and, by using a combination of 2D-PAGE/Western blotting and immunogold electron microscopy, determined that these different conformations are exhibited in vivo and arise from differential phosphorylation of GLUT-1 and not from alternative splicing or altered O- or N-linked glycosylation.


Assuntos
Barreira Hematoencefálica/química , Barreira Hematoencefálica/metabolismo , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/metabolismo , Animais , Northern Blotting , Western Blotting , Bovinos , Eletroforese em Gel Bidimensional , Microscopia Imunoeletrônica , Fosforilação , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
2.
J Cereb Blood Flow Metab ; 35(1): 48-57, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25315861

RESUMO

Neurologic disorders such as Alzheimer's, Parkinson's disease, and Restless Legs Syndrome involve a loss of brain iron homeostasis. Moreover, iron deficiency is the most prevalent nutritional concern worldwide with many associated cognitive and neural ramifications. Therefore, understanding the mechanisms by which iron enters the brain and how those processes are regulated addresses significant global health issues. The existing paradigm assumes that the endothelial cells (ECs) forming the blood-brain barrier (BBB) serve as a simple conduit for transport of transferrin-bound iron. This concept is a significant oversimplification, at minimum failing to account for the iron needs of the ECs. Using an in vivo model of brain iron deficiency, the Belgrade rat, we show the distribution of transferrin receptors in brain microvasculature is altered in luminal, intracellular, and abluminal membranes dependent on brain iron status. We used a cell culture model of the BBB to show the presence of factors that influence iron release in non-human primate cerebrospinal fluid and conditioned media from astrocytes; specifically apo-transferrin and hepcidin were found to increase and decrease iron release, respectively. These data have been integrated into an interactive model where BBB ECs are central in the regulation of cerebral iron metabolism.


Assuntos
Anemia Ferropriva/metabolismo , Encéfalo/metabolismo , Ferro/metabolismo , Modelos Biológicos , Anemia Ferropriva/líquido cefalorraquidiano , Anemia Ferropriva/genética , Animais , Apoproteínas/metabolismo , Astrócitos/metabolismo , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Encéfalo/irrigação sanguínea , Bovinos , Células Cultivadas , Células Endoteliais/metabolismo , Feminino , Hepcidinas/metabolismo , Heterozigoto , Homozigoto , Ferro/líquido cefalorraquidiano , Macaca mulatta , Masculino , Microvasos/metabolismo , Ratos Sprague-Dawley , Receptores da Transferrina/metabolismo , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA