Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Arch Biochem Biophys ; 752: 109843, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38072298

RESUMO

Self-assembling nanoparticles (saNP) and nanofibers were found in the recombinant coronavirus SARS-CoV-2 S1, S2, RBD and N proteins purified by affinity chromatography using Ni Sepharose. Scanning electron (SEM), atomic force (AFM) microscopy on mica or graphite surface and in liquid as well as dynamic light scattering (DLS) revealed nanostructures of various sizes. AFM in liquid cell without drying on the surface showed mean height of S1 saNP 80.03 nm, polydispersity index (PDI) 0.006; for S2 saNP mean height 93.32 nm, PDI = 0.008; for N saNP mean height 16.71 nm, PDI = 0.99; for RBD saNP mean height 16.25 nm, PDI = 0.55. Ratios between the height and radius of each saNP in the range 0.1-0.5 suggested solid protein NP but not vesicles with internal empty spaces. The solid but not empty structures of the protein saNP were also confirmed by STEM after treatment of saNP with the standard contrasting agent uranyl acetate. The saNP remained stable after multiple freeze-thaw cycles in water and hyperosmotic solutions for 2 years at -20 °C. Receptor-mediated penetration of the SARS-CoV-2 S1 and RBD saNP in the African green mokey kidney Vero cells with the specific receptors for ß-coronavirus reproduction was more efficient compared to unspecific endocytosis into MDCK cells without the specific receptors. Amyloid-like structures were revealed in the SARS-CoV-2 S1, S2, RBD and N saNP by means of their interaction with Thioflavin T and Congo Red dyes. Taken together, spontaneous formation of the amyloid-like self-assembling nanostructures due to the internal affinity of the SARS-CoV-2 virion proteins might induce proteinopathy in patients, including conformational neurodegenerative diseases, change stability of vaccines and diagnostic systems.


Assuntos
COVID-19 , Nanoestruturas , Animais , Humanos , Chlorocebus aethiops , SARS-CoV-2 , Células Vero , Proteínas Recombinantes , Amiloide , Proteínas Amiloidogênicas
2.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769367

RESUMO

Limited membrane permeability and biodegradation hamper the intracellular delivery of the free natural or recombinant enzymes necessary for compensatory therapy. Nanoparticles (NP) provide relative protein stability and unspecific endocytosis-mediated cellular uptake. Our objective was the fabrication of NP from 7 biomedicine-relevant enzymes, including DNase I, RNase A, trypsin, chymotrypsin, catalase, horseradish peroxidase (HRP) and lipase, the analysis of their conformation stability and enzymatic activity as well as possible toxicity for eukaryotic cells. The enzymes were dissolved in fluoroalcohol and mixed with 40% ethanol as an anti-solvent with subsequent alcohol evaporation at high temperature and low pressure. The shapes and sizes of NP were determined by scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic light scattering (DLS). Enzyme conformations in solutions and in NP were compared using circular dichroism (CD) spectroscopy. The activity of the enzymes was assayed with specific substrates. The cytotoxicity of the enzymatic NP (ENP) was studied by microscopic observations and by using an MTT test. Water-insoluble ENP of different shapes and sizes in a range 50-300 nm consisting of 7 enzymes remained stable for 1 year at +4 °C without any cross-linking. CD spectroscopy of the ENP permitted us to reveal changes in proportions of α-helixes, ß-turns and random coils in comparison with fresh enzyme solutions in water. Despite the minor conformation changes of the proteins in the ENP, the enzymes retained their substrate-binding and catalytic properties. Among the studied bioactive ENP, only DNase NP were highly toxic for 3 cell lines with granulation in 1 day posttreatment, whereas other NP were less toxic (if any). Taken together, the enzymes in the stable ENP retained their catalytic activity and might be used for intracellular delivery.


Assuntos
Nanopartículas , Peptídeo Hidrolases , Antioxidantes , Endopeptidases , Peroxidase do Rábano Silvestre/metabolismo , Lipase , Nanopartículas/química , Biocatálise , Especificidade por Substrato
3.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372975

RESUMO

In the present work, complexes of DNA with nano-clay montmorillonite (Mt) were investigated by means of atomic force microscopy (AFM) under various conditions. In contrast to the integral methods of analysis of the sorption of DNA on clay, AFM allowed us to study this process at the molecular level in detail. DNA molecules in the deionized water were shown to form a 2D fiber network weakly bound to both Mt and mica. The binding sites are mostly along Mt edges. The addition of Mg2+ cations led to the separation of DNA fibers into separate molecules, which bound mainly to the edge joints of the Mt particles according to our reactivity estimations. After the incubation of DNA with Mg2+, the DNA fibers were capable of wrapping around the Mt particles and were weakly bound to the Mt edge surfaces. The reversible sorption of nucleic acids onto the Mt surface allows it to be used for both RNA and DNA isolation for further reverse transcription and polymerase chain reaction (PCR). Our results show that the strongest binding sites for DNA are the edge joints of Mt particles.


Assuntos
Bentonita , DNA , Bentonita/química , Microscopia de Força Atômica/métodos , DNA/química , Silicatos de Alumínio/química , Sítios de Ligação , Cátions/química
4.
Int J Mol Sci ; 24(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958911

RESUMO

The application of vaterite microparticles for mucosal delivery depends on their interaction with mucin and immune cells. As we have shown previously, the binding of mucin onto particles enhances the generation of reactive oxygen species by neutrophils. The attenuation of the pro-oxidant effect of the bound mucin through the modification of vaterite could improve its biocompatibility. Hybrid microparticles composed of vaterite and pectin (CCP) were prepared using co-precipitation. In comparison with vaterite (CC), they had a smaller diameter and pores, a greater surface area, and a negative zeta-potential. We aimed to study the cytotoxicity and mucin-dependent neutrophil-activating effect of CCP microparticles. The incorporated pectin did not influence the neutrophil damage according to a lactate dehydrogenase test. The difference in the CC- and CCP-elicited luminol or lucigenin chemiluminescence of neutrophils was insignificant, with no direct pro- or antioxidant effects from the incorporated pectin. Unlike soluble pectin, the CCP particles were ineffective at scavenging radicals in an ABAP-luminol test. The fluorescence of SYTOX Green demonstrated a CCP-stimulated formation of neutrophil extracellular traps (NETs). The pre-treatment of CC and CCP with mucin resulted in a 2.5-times-higher CL response of neutrophils to the CC-mucin than to the CCP-mucin. Thus, the incorporation of pectin into vaterite microspheres enabled an antioxidant effect to be reached when the neutrophils were activated by mucin-treated microparticles, presumably via exposed ligands.


Assuntos
Carbonato de Cálcio , Pectinas , Pectinas/farmacologia , Pectinas/metabolismo , Carbonato de Cálcio/farmacologia , Luminol/metabolismo , Mucinas/metabolismo , Ativação de Neutrófilo , Espécies Reativas de Oxigênio/metabolismo , Antioxidantes/farmacologia , Neutrófilos/metabolismo
5.
Int J Mol Sci ; 23(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35887188

RESUMO

Hyperglycemia-induced protein glycation and formation of advanced glycation end-products (AGEs) plays an important role in the pathogenesis of diabetic complications and pathological biomineralization. Receptors for AGEs (RAGEs) mediate the generation of reactive oxygen species (ROS) via activation of NADPH-oxidase. It is conceivable that binding of glycated proteins with biomineral particles composed mainly of calcium carbonate and/or phosphate enhances their neutrophil-activating capacity and hence their proinflammatory properties. Our research managed to confirm this hypothesis. Human serum albumin (HSA) was glycated with methylglyoxal (MG), and HSA-MG was adsorbed onto mineral microparticles composed of calcium carbonate nanocrystals (vaterite polymorph, CC) or hydroxyapatite nanowires (CP). As scopoletin fluorescence has shown, H2O2 generation by neutrophils stimulated with HSA-MG was inhibited with diphenyleneiodonium chloride, wortmannin, genistein and EDTA, indicating a key role for NADPH-oxidase, protein tyrosine kinase, phosphatidylinositol 3-kinase and divalent ions (presumably Ca2+) in HSA-MG-induced neutrophil respiratory burst. Superoxide anion generation assessed by lucigenin-enhanced chemiluminescence (Luc-CL) was significantly enhanced by free HSA-MG and by both CC-HSA-MG and CP-HSA-MG microparticles. Comparing the concentrations of CC-bound and free HSA-MG, one could see that adsorption enhanced the neutrophil-activating capacity of HSA-MG.


Assuntos
Ativação de Neutrófilo , Aldeído Pirúvico , Carbonato de Cálcio , Produtos Finais de Glicação Avançada/metabolismo , Humanos , Peróxido de Hidrogênio , Minerais , NADP , NADPH Oxidases/metabolismo , Aldeído Pirúvico/farmacologia , Albumina Sérica , Albumina Sérica Humana/química , Albumina Sérica Glicada
6.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142492

RESUMO

Nano- and microparticles enter the body through the respiratory airways and the digestive system, or form as biominerals in the gall bladder, salivary glands, urinary bladder, kidney, or diabetic pancreas. Calcium, magnesium, and phosphate ions can precipitate from biological fluids in the presence of mucin as hybrid nanoparticles. Calcium carbonate nanocrystallites also trap mucin and are assembled into hybrid microparticles. Both mucin and calcium carbonate polymorphs (calcite, aragonite, and vaterite) are known to be components of such biominerals as gallstones which provoke inflammatory reactions. Our study was aimed at evaluation of neutrophil activation by hybrid vaterite-mucin microparticles (CCM). Vaterite microparticles (CC) and CCM were prepared under standard conditions. The diameter of CC and CCM was 3.3 ± 0.8 µm and 5.8 ± 0.7 µm, with ƺ-potentials of -1 ± 1 mV and -7 ± 1 mV, respectively. CC microparticles injured less than 2% of erythrocytes in 2 h at 1.5 mg mL-1, and no hemolysis was detected with CCM; this let us exclude direct damage of cellular membranes by microparticles. Activation of neutrophils was analyzed by luminol- and lucigenin-dependent chemiluminescence (Lum-CL and Luc-CL), by cytokine gene expression (IL-6, IL-8, IL-10) and release (IL-1ß, IL-6, IL-8, IL-10, TNF-α), and by light microscopy of stained smears. There was a 10-fold and higher increase in the amplitude of Lum-CL and Luc-CL after stimulation of neutrophils with CCM relative to CC. Adsorption of mucin onto prefabricated CC microparticles also contributed to activation of neutrophil CL, unlike mucin adsorption onto yeast cell walls (zymosan); adsorbed mucin partially suppressed zymosan-stimulated production of oxidants by neutrophils. Preliminary treatment of CCM with 0.1-10 mM NaOCl decreased subsequent activation of Lum-CL and Luc-CL of neutrophils depending on the used NaOCl concentration, presumably because of the surface mucin oxidation. Based on the results of ELISA, incubation of neutrophils with CCM downregulated IL-6 production but upregulated that of IL-8. IL-6 and IL-8 gene expression in neutrophils was not affected by CC or CCM according to RT2-PCR data, which means that post-translational regulation was involved. Light microscopy revealed adhesion of CC and CCM microparticles onto the neutrophils; CCM increased neutrophil aggregation with a tendency to form neutrophil extracellular traps (NETs). We came to the conclusion that the main features of neutrophil reaction to mucin-vaterite hybrid microparticles are increased oxidant production, cell aggregation, and NET-like structure formation, but without significant cytokine release (except for IL-8). This effect of mucin is not anion-specific since particles of powdered kidney stone (mainly calcium oxalate) in the present study or calcium phosphate nanowires in our previous report also activated Lum-CL and Luc-CL response of neutrophils after mucin sorption.


Assuntos
Luminol , Neutrófilos , Cálcio/metabolismo , Carbonato de Cálcio/farmacologia , Oxalato de Cálcio/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Íons/metabolismo , Luminol/química , Magnésio/metabolismo , Mucinas/metabolismo , Neutrófilos/metabolismo , Oxidantes/farmacologia , Fosfatos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Zimosan/farmacologia
7.
Langmuir ; 36(49): 15119-15127, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33264013

RESUMO

Production of small discrete DNA nanostructures containing covalent junctions requires reliable methods for the synthesis and assembly of branched oligodeoxynucleotide (ODN) conjugates. This study reports an approach for self-assembly of hard-to-obtain primitive discrete DNA nanostructures-"nanoethylenes", dimers formed by double-stranded oligonucleotides using V-shaped furcate blocks. We scaled up the synthesis of V-shaped oligonucleotide conjugates using pentaerythritol-based diazide and alkyne-modified oligonucleotides using copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) and optimized the conditions for "nanoethylene" formation. Next, we designed nanoethylene-based "nanomonomers" containing pendant adapters. They demonstrated smooth and high-yield spontaneous conversion into the smallest cyclic product, DNA tetragon aka "nano-methylcyclobutane". Formation of DNA nanostructures was confirmed using native polyacrylamide gel electrophoresis (PAGE) and atomic force microscopy (AFM) and additionally studied by molecular modeling. The proposed facile approach to discrete DNA nanostructures using precise adapter-directed association expands the toolkit for the realm of DNA origami.


Assuntos
Nanoestruturas , Azidas , DNA , Microscopia de Força Atômica , Oligonucleotídeos
8.
Nucleic Acids Res ; 46(3): 1102-1112, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29267876

RESUMO

Modeling tools provide a valuable support for DNA origami design. However, current solutions have limited application for conformational analysis of the designs. In this work we present a tool for a thorough study of DNA origami structure and dynamics. The tool is based on a novel coarse-grained model dedicated to geometry optimization and conformational analysis of DNA origami. We explored the ability of the model to predict dynamic behavior, global shapes, and fine details of two single-layer systems designed in hexagonal and square lattices using atomic force microscopy, Förster resonance energy transfer spectroscopy, and all-atom molecular dynamic simulations for validation of the results. We also examined the performance of the model for multilayer systems by simulation of DNA origami with published cryo-electron microscopy and atomic force microscopy structures. A good agreement between the simulated and experimental data makes the model suitable for conformational analysis of DNA origami objects. The tool is available at http://vsb.fbb.msu.ru/cosm as a web-service and as a standalone version.


Assuntos
DNA/química , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Simulação de Dinâmica Molecular , Pareamento de Bases , Sequência de Bases , Microscopia Crioeletrônica , DNA/genética , Fator Neurotrófico Derivado de Linhagem de Célula Glial/química , Humanos , Microscopia de Força Atômica , Conformação de Ácido Nucleico
9.
Nucleic Acids Res ; 46(17): 8978-8992, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30107602

RESUMO

We examined the assembly of DNA G-quadruplexes (G4s) into higher-order structures using atomic force microscopy, optical and electrophoretic methods, NMR spectroscopy and molecular modeling. Our results suggest that parallel blunt-ended G4s with single-nucleotide or modified loops may form different types of multimers, ranging from stacks of intramolecular structures and/or interlocked dimers and trimers to wires. Decreasing the annealing rate and increasing salt or oligonucleotide concentrations shifted the equilibrium from intramolecular G4s to higher-order structures. Control antiparallel and hybrid G4s demonstrated no polymorphism or aggregation in our experiments. The modification that mimics abasic sites (1',2'-dideoxyribose residues) in loops enhanced the oligomerization/multimerization of both the 2-tetrad and 3-tetrad G4 motifs. Our results shed light on the rules that govern G4 rearrangements. Gaining control over G4 folding enables the harnessing of the full potential of such structures for guided assembly of supramolecular DNA structures for nanotechnology.


Assuntos
Desoxirribose/análogos & derivados , Quadruplex G , Dobramento de RNA , Pareamento de Bases , Desoxirribose/química , Modelos Moleculares , Motivos de Nucleotídeos , Mutação Puntual , Cloreto de Potássio
10.
Nanomedicine ; 30: 102293, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32853784

RESUMO

Intracellular delivery of protein nanoparticles (NP) is required for nanomedicine. Our research was focused on the quantitative analysis of protein NP intracellular accumulation and biodegradation in dynamics along with host cytokine gene expression. Fluorescent NP fabricated by nanoprecipitation without cross-linking of bovine serum albumin (BSA) and human immunoglobulins (hIgG) pre-labeled with Rhodamine B were non-toxic for human cells. Similar gradual uptake of the NP during 2 days and subsequent slowdown until background values for 5 days for human cell lines and donor blood mononuclear cells revealed that NP internalization was neither cell-type nor protein-specific. NP delivery into cells was inhibited by homologous and heterologous NP but did not depend on the presence of BSA or hIgG in culture media. The protein NP internalization induced interferon α, ß, λ but neither γ nor interleukin 4 and 6 gene expression. Accordingly, cellular uptake of non-toxic protein NP induced Th1 polarized innate response.


Assuntos
Citocinas/genética , Regulação da Expressão Gênica , Nanopartículas/administração & dosagem , Proteínas/administração & dosagem , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Microscopia Confocal , Proteínas/genética , Proteínas/metabolismo , Soroalbumina Bovina/metabolismo
11.
Langmuir ; 35(30): 9732-9739, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31282164

RESUMO

Fibrinogen adsorption plays a key role in important biological processes, such as blood coagulation and foreign body reaction, which determine the biocompatibility of a material. Fibrinogen conformation on a surface is one of the main factors triggering these processes. Understanding the conformational dynamics of fibrinogen molecules adsorbed on solid surfaces is, therefore, of great interest in biomedicine and may contribute to the development of new biomaterials. In this work, unfolding of fibrinogen molecules adsorbed on a model surface (highly oriented pyrolytic graphite modified with an oligoglycine-hydrocarbon graphite modifier) is directly visualized using time-lapse atomic force microscopy. A gradual transformation of native-like fibrinogen molecules into fibrillar structures is observed at a timescale of several minutes. This transformation is accompanied by a decrease in molecular height from 4-5 to 1-2 nm. Independent unfolding of different fibrinogen domains is demonstrated. The obtained results provide a new, direct insight into the unfolding of individual fibrinogen molecules on a surface and give new opportunities for the development of graphite-based biosensors and biomaterials.


Assuntos
Fibrinogênio/química , Grafite/química , Grafite/farmacologia , Microscopia de Força Atômica , Desdobramento de Proteína/efeitos dos fármacos , Propriedades de Superfície
12.
Biochem Biophys Res Commun ; 495(2): 2066-2070, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29253563

RESUMO

Silicateins, the spicule-forming proteins from marine demosponges capable to polymerize silica, are popular objects of biomineralization studies due to their ability to form particles varied in shape and composition under physiological conditions. Despite the occurrence of the many approaches to nanomaterial synthesis using silicateins, biochemical properties of this protein family are poorly characterized. The main reason for this is that tetraethyl orthosilicate (TEOS), the commonly used silica acid precursor, is almost insoluble in water and thus is poorly available for the protein. To solve this problem, we synthesized new water-soluble silica precursor, tetra(glycerol)orthosilicate (TGS), and characterized biochemical properties of the silicatein A1 from marine sponge Latrunculia oparinae. Compared to TEOS, TGS ensured much greater activity of silicatein and was less toxic for the mammalian cell culture. We evaluated optimum conditions for the enzyme - pH range, temperature and TGS concentration. We concluded that TGS is a useful silica acid precursor that can be used for silica particles synthesis and in vivo applications.


Assuntos
Materiais Biomiméticos/síntese química , Catepsinas/química , Polímeros/síntese química , Poríferos/química , Dióxido de Silício/síntese química , Água/química , Animais , Teste de Materiais , Solubilidade
13.
Langmuir ; 33(38): 10027-10034, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28850785

RESUMO

Atomic force microscopy (AFM) of biomolecular processes at the single-molecule level can provide unique information for understanding molecular function. In AFM studies of biomolecular processes in solution, mica surfaces are predominantly used as substrates. However, owing to its high surface charge, mica may induce high local ionic strength in the vicinity of its surface, which may shift the equilibrium of studied biomolecular processes such as biopolymer adsorption or protein-DNA interaction. In the search for alternative substrates, we have investigated the behavior of adsorbed biomolecules, such as plasmid DNA and E. coli RNA polymerase σ70 subunit holoenzyme (RNAP), on highly oriented pyrolytic graphite (HOPG) surfaces modified with stearylamine and oligoglycine-hydrocarbon derivative (GM) monolayers using AFM in solution. We have demonstrated ionic-strength-dependent DNA mobility on GM HOPG and nativelike dimensions of RNAP molecules adsorbed on modified HOPG surfaces. We propose an approach to the real-time AFM investigation of transcription on stearylamine monolayers on graphite. We conclude that modified graphite allows us to study biomolecules and biomolecular processes on its surface at controlled ionic strength and may be used as a complement to mica in AFM investigations.

14.
Biophys J ; 111(6): 1163-1172, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653475

RESUMO

We performed dynamic force spectroscopy of single dextran and titin I27 molecules using small-amplitude and low-frequency (40-240 Hz) dithering of an atomic force microscope tip excited by a sine wave voltage fed onto the tip-carrying piezo. We show that for such low-frequency dithering experiments, recorded phase information can be unambiguously interpreted within the framework of a transparent theoretical model that starts from a well-known partial differential equation to describe the dithering of an atomic force microscope cantilever and a single molecule attached to its end system, uses an appropriate set of initial and boundary conditions, and does not exploit any implicit suggestions. We conclude that the observed phase (dissipation) signal is due completely to the dissipation related to the dithering of the cantilever itself (i.e., to the change of boundary conditions in the course of stretching). For both cases, only the upper bound of the dissipation of a single molecule has been established as not exceeding 3⋅10(-7)kg/s. We compare our results with previously reported measurements of the viscoelastic properties of single molecules, and we emphasize that extreme caution must be taken in distinguishing between the dissipation related to the stretched molecule and the dissipation that originates from the viscous damping of the dithered cantilever. We also present the results of an amplitude channel data analysis, which reveal that the typical values of the spring constant of a I27 molecule at the moment of module unfolding are equal to 4±1.5mN/m, and the typical values of the spring constant of dextran at the moment of chair-boat transition are equal to 30-50mN/m.


Assuntos
Dextranos/química , Microscopia de Força Atômica , Proteínas/química , Elasticidade , Desenho de Equipamento , Escherichia coli , Humanos , Modelos Teóricos , Solventes/química , Viscosidade , Água/química
15.
Nanomedicine ; 12(6): 1615-25, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27015767

RESUMO

Proteins adsorbed on a surface may affect the interaction of this surface with cells. Here, we studied the binding of human serum albumin (HSA), fibrinogen (FBG) and immunoglobulin G (IgG) to PEGylated single-walled carbon nanotubes (PEG-SWCNTs) and evaluated the impact of PEG-SWCNT treated by these proteins on neutrophils in whole blood samples. Measurements of adsorption parameters revealed tight binding of proteins to PEG-SWCNTs. AFM was employed to directly observe protein binding to sidewalls of PEG-SWCNTs. Fluorescein-labeled IgG was used to ascertain the stability of PEG-SWCNT-IgG complexes in plasma. In blood samples, all plasma proteins mitigated damage of neutrophils observed just after blood exposure to PEG-SWCNTs, while only treatment of PEG-SWCNTs with IgG resulted in dose- and time-dependent enhancement of CNT-induced neutrophil activation and in potentiation of oxidative stress. Our study demonstrates the ability of adsorbed plasma proteins to influence neutrophil response caused by PEG-SWCNTs in whole blood.


Assuntos
Proteínas Sanguíneas/fisiologia , Nanotubos de Carbono , Neutrófilos/efeitos dos fármacos , Adsorção , Humanos , Ligação Proteica
16.
Int J Biol Macromol ; 267(Pt 2): 131630, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631581

RESUMO

Understanding of DNA interaction with carbonaceous surfaces (including graphite, graphene and carbon nanotubes) is important for the development of DNA-based biosensors and other biotechnological devices. Though many issues related to DNA adsorption on graphitic surfaces have been studied, some important aspects of DNA interaction with graphite remain unclear. In this work, we use atomic force microscopy (AFM) equipped with super-sharp cantilevers to analyze the morphology and conformation of relatively long DNA molecule adsorbed on a highly oriented pyrolytic graphite (HOPG) surface. We have revealed the effect of DNA embedding into an organic monolayer of N,N'-(decane-1,10-diyl)-bis(tetraglycinamide) (GM), which may "freeze" DNA conformation on a HOPG surface during drying. The dependence of the mean squared point-to-point distance on the contour length suggests that DNA adsorbs on a bare HOPG by a "kinetic trapping" mechanism. For the first time, we have estimated the unfolded fraction of DNA upon contact with a HOPG surface (24 ± 5 %). The obtained results represent a novel experimental model for investigation of the conformation and morphology of DNA adsorbed on graphitic surfaces and provide with a new insight into DNA interaction with graphite.


Assuntos
DNA , Grafite , Microscopia de Força Atômica , Desnaturação de Ácido Nucleico , Grafite/química , Microscopia de Força Atômica/métodos , DNA/química , Propriedades de Superfície , Adsorção , Conformação de Ácido Nucleico
17.
Polymers (Basel) ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732656

RESUMO

Studying cell settlement in the three-dimensional structure of synthetic biomaterials over time is of great interest in research and clinical translation for the development of artificial tissues and organs. Tracking cells as physical objects improves our understanding of the processes of migration, homing, and cell division during colonisation of the artificial environment. In this study, the 3D environment had a direct effect on the behaviour of biological objects. Recently, deep learning-based algorithms have shown significant benefits for cell segmentation tasks and, furthermore, for biomaterial design optimisation. We analysed the primary LHON fibroblasts in an artificial 3D environment after adeno-associated virus transduction. Application of these tools to model cell homing in biomaterials and to monitor cell morphology, migration and proliferation indirectly demonstrated restoration of the normal cell phenotype after gene manipulation by AAV transduction. Following the 3Rs principles of reducing the use of living organisms in research, modeling the formation of tissues and organs by reconstructing the behaviour of different cell types on artificial materials facilitates drug testing, the study of inherited and inflammatory diseases, and wound healing. These studies on the composition and algorithms for creating biomaterials to model the formation of cell layers were inspired by the principles of biomimicry.

18.
Heliyon ; 10(13): e33801, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39027545

RESUMO

Co-precipitation of biopolymers into calcium carbonate crystals changes their physicochemical and biological properties. This work studies hybrid microcrystals of vaterite obtained in the presence of natural polysaccharides, as carriers for the delivery of proteins and enzymes. Hybrid microcrystals with dextran sulfate, chondroitin sulfate, heparin, fucoidan, and pectin were obtained and compared. The impact of polysaccharides on the morphology (particle diameter, surface area, nanocrystallite and pore size), polysaccharide content and surface charge of hybrid microcrystals was studied. Only microcrystals with fucoidan and heparin exhibited antioxidant activity against •ОН radical. The surface charge and pore size of the hybrid microcrystals affected the sorption of albumin, catalase, chymotrypsin, mucin. A decrease in the catalytic constant and Michaelis constant was observed for catalase sorbed on the hybrid crystals. The biocompatibility of microcrystals depended on the nature of the included polysaccharide: crystals with sulfated polysaccharides increased blood plasma coagulation but not platelet aggregation, and crystals with dextran sulfate had the greatest cytotoxicity against HT-29 cells but not erythrocytes. Hybrid microcrystals with all polysaccharides except chondroitin sulfate reduced erythrocyte lysis in vitro compared with vaterite crystals. The obtained results enable to create novel carriers based on hybrid vaterite crystals with polysaccharides, beneficial for the delivery of protein drugs.

19.
Carbohydr Polym ; 303: 120472, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657830

RESUMO

Investigation of hyaluronic acid (HA) morphology and mechanical properties at a single-molecule level is important for the development of HA based biomaterials. We have developed the atomic force microscopy (AFM) based approach for quantitative characterization of conformation of HA molecules. HA molecules adsorbed on a modified graphitic surface form oriented linear segments. Conformation of HA molecules can be considered as two-dimensional quasi-projection of a three-dimensional conformation locally straightened by a substrate. The persistence length and Young's modulus of biomolecules estimated using wormlike chain model decrease from 15.7 to 9.9 nm, and from ∼21 to ∼13 GPa, respectively, when KCl concentration increases from 0 to 100 mM. The dependence of the persistence length on ionic strength supports the Odijk-Skolnick-Fixman model of polyelectrolyte stiffening in electrolyte solution. The obtained results represent a new insight into the conformation and mechanical characteristics of HA molecules and complement the characterization of this biopolymer by bulk methods.

20.
Int J Biol Macromol ; 242(Pt 2): 124835, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201883

RESUMO

Though the capability of chromium treatment to improve the stability and mechanical properties of collagen fibrils is well-known, the influence of different chromium salts on collagen molecules (tropocollagen) is not well characterized. In this study, the effect of Cr3+ treatment on the conformation and hydrodynamic properties of collagen was studied using atomic force microscopy (AFM) and dynamic light scattering (DLS). Statistical analysis of contours of adsorbed tropocollagen molecules using the two-dimensional worm-like chain model revealed a reduction of the persistence length (i.e., the increase of flexibility) from ≈72 nm in water to ≈56-57 nm in chromium (III) salt solutions. DLS studies demonstrated an increase of the hydrodynamic radius from ≈140 nm in water to ≈190 nm in chromium (III) salt solutions, which is associated with protein aggregation. The kinetics of collagen aggregation was shown to be ionic strength dependent. Collagen molecules treated with three different chromium (III) salts demonstrated similar properties such as flexibility, aggregation kinetics, and susceptibility to enzymatic cleavage. The observed effects are explained by a model that considers the formation of chromium-associated intra- and intermolecular crosslinks. The obtained results provide novel insights into the effect of chromium salts on the conformation and properties of tropocollagen molecules.


Assuntos
Sais , Tropocolágeno , Sais/farmacologia , Colágeno , Microscopia de Força Atômica/métodos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA