Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(19): 8556-8566, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38684718

RESUMO

One of the crucial metabolic processes for both plant and animal kingdoms is the oxidation of the amino acid tryptophan (TRP) that regulates plant growth and controls hunger and sleeping patterns in animals. Here, we report revolutionary insights into how this process can be crucially affected by interactions with metal oxide nanoparticles (NPs), creating a toolbox for a plethora of important biomedical and agricultural applications. Molecular mechanisms in TRP-NP interactions were revealed by NMR and optical spectroscopy for ceria and titania and by X-ray single-crystal study and a computational study of model TRP-polyoxometalate complexes, which permitted the visualization of the oxidation mechanism at an atomic level. Nanozyme activity, involving concerted proton and electron transfer to the NP surface for oxides with a high oxidative potential, like CeO2 or WO3, converted TRP in the first step into a tricyclic organic acid belonging to the family of natural plant hormones, auxins. TiO2, a much poorer oxidant, was strongly binding TRP without concurrent oxidation in the dark but oxidized it nonspecifically via the release of reactive oxygen species (ROS) in daylight.


Assuntos
Nanopartículas Metálicas , Triptofano , Cério/química , Nanopartículas Metálicas/química , Modelos Moleculares , Oxirredução , Óxidos/química , Titânio/química , Triptofano/química , Triptofano/metabolismo
2.
J Am Chem Soc ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763485

RESUMO

O2 formation in photosystem II (PSII) is a vital event on Earth, but the exact mechanism remains unclear. The presently prevailing theoretical model is "radical coupling" (RC) involving a Mn(IV)-oxyl unit in an "open-cubane" Mn4CaO6 cluster, which is supported experimentally by the S3 state of cyanobacterial PSII featuring an additional Mn-bound oxygenic ligand. However, it was recently proposed that the major structural form of the S3 state of higher plants lacks this extra ligand, and that the resulting S4 state would feature instead a penta-coordinate dangler Mn(V)=oxo, covalently linked to a "closed-cubane" Mn3CaO4 cluster. For this proposal, we explore here a large number of possible pathways of O-O bond formation and demonstrate that the "nucleophilic oxo-oxo coupling" (NOOC) between Mn(V)=oxo and µ3-oxo is the only eligible mechanism in such a system. The reaction is facilitated by a specific conformation of the cluster and concomitant water binding, which is delayed compared to the RC mechanism. An energetically feasible process is described starting from the valid S4 state through the sequential formation of peroxide and superoxide, followed by O2 release and a second water insertion. The newly found mechanism is consistent with available experimental thermodynamic and kinetic data and thus a viable alternative pathway for O2 formation in natural photosynthesis, in particular for higher plants.

3.
J Am Chem Soc ; 144(26): 11736-11747, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35748306

RESUMO

Photosynthetic water oxidation is catalyzed by a manganese-calcium oxide cluster, which experiences five "S-states" during a light-driven reaction cycle. The unique "distorted chair"-like geometry of the Mn4CaO5(6) cluster shows structural flexibility that has been frequently proposed to involve "open" and "closed"-cubane forms from the S1 to S3 states. The isomers are interconvertible in the S1 and S2 states, while in the S3 state, the open-cubane structure is observed to dominate inThermosynechococcus elongatus (cyanobacteria) samples. In this work, using density functional theory calculations, we go beyond the S3+Yz state to the S3nYz• → S4+Yz step, and report for the first time that the reversible isomerism, which is suppressed in the S3+Yz state, is fully recovered in the ensuing S3nYz• state due to the proton release from a manganese-bound water ligand. The altered coordination strength of the manganese-ligand facilitates formation of the closed-cubane form, in a dynamic equilibrium with the open-cubane form. This tautomerism immediately preceding dioxygen formation may constitute the rate limiting step for O2 formation, and exert a significant influence on the water oxidation mechanism in photosystem II.


Assuntos
Manganês , Água , Catálise , Isomerismo , Ligantes , Manganês/química , Oxirredução , Oxigênio/química , Complexo de Proteína do Fotossistema II/química , Água/química
4.
J Comput Chem ; 43(29): 1985-1996, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36129213

RESUMO

A series of di- and polymetal complexes involving closed-shell, heavy main-group atoms and ions shows a selection of special physical properties. These involve short metal-metal contacts, low entropies of formation and, most interestingly, strong Raman bands at low wavenumbers. These results together with the constitution of the coordination compounds, where the majority of electrons are assembled on the highly polarizable metal atoms and ions, experimental results have been interpreted in terms of direct, partial covalent metal-metal bonding. Previous theoretical studies have challenged this view and instead attributed the obvious attractive forces involved to secondary-type of interactions, such as dispersion. This study utilizes a multitude of theoretical tools, such as natural bond order (NBO) and natural energy decomposition analysis (NEDA), non-covalent interaction (NCI) analysis, electron localization functions (ELFs), and atoms-in-molecules (AIM) to characterize the interactions in models comprising closed-shell dimers, as well as experimentally studied ring and cage systems constituting the main reason for the hypotheses on metal-metal interactions. The results show that all experimental results can be attributed to the covalent interactions between the electron-rich, metal centers and the bridging anions in ring and cage coordination compounds of high symmetry, where the experimentally observed effects can be traced to the combination of covalent interactions between the metal centers and the anions along the edges of the ring and cage systems in combination with the cooperative effects generated by the high symmetry of these ring and cage systems.

5.
Phys Chem Chem Phys ; 24(41): 25452-25461, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36250499

RESUMO

The dangers posed by nuclear accidents necessitate developments in techniques for cesium removal. One such is the adsorption of cesium cations in Prussian blue (PB) materials, on which adsorption can be a substation process or pure physisorption. The underlying mechanism of the latter is not well understood, although a Langmuir isotherm is frequently used to model experimental results. In this work, we exploit tight-binding density-functional theory (DFTB) methods to probe the atomic interactions in the physisorption process. The results show that there is a diminishing return for the energy of adsorption as more sites are filled. This means that the adsorption sites are not independent, as stipulated by the ideal Langmuir isotherm. Instead, the results indicate that electrostatic effects need to be considered to explain the theoretical and experimental results. Therefore, an electrostatic Langmuir (EL) model is introduced, which contains an electrostatic ideality correction to the classic Langmuir isotherm. For future materials development, these physical insights indicate that shielding effects as well as the number of independent physical sites must be considered when synthesizing effective Prussian blue analogs (PBA). In conclusion, the study provides insights into the limiting mechanisms in the physisorption of cesium cations on PB.

6.
Phys Chem Chem Phys ; 24(20): 12374-12382, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35551313

RESUMO

Prussian blue analogs (PBAs) form crystals with large lattice voids that are suitable for the capture, transport and storage of various interstitial ions. Recently, we introduced the concept of a ladder mechanism to describe how sodium ions inside a PBA crystal structure diffuse by climbing the frames formed by aligned cyanide groups in the host structure. The current work uses semi-empirical tight-binding density functional theory (DFTB) in a multiscale approach to investigate how differences in the size of the monovalent cation affect the qualitative and quantitative aspects of the diffusion process. The results show that the ladder mechanism represents a unified framework, from which both similarities and differences between cation types can be understood. Fundamental Coulombic interactions make all positive cations avoid the open vacant areas in the structure, while cavities surrounded by partially negatively charged cyanide groups form diffusion bottlenecks and traps for larger cations. These results provide a new and quantitative way of understanding the suppression of cesium adsorption that has previously been reported for PBAs characterized by a low vacancy density. In conclusion, this work provides a unified picture of the cation adsorption in PBAs based on the newly formulated ladder mechanism.

7.
Phys Chem Chem Phys ; 24(31): 18888-18895, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35913077

RESUMO

Electrochemical impedance spectroscopy (EIS) is a commonly used steady-state technique to examine the internal resistance of electron-transfer processes in solar cell devices, and the results are directly related to the photovoltaic performance. In this study, EIS was performed to study the effects of accelerated ageing, aiming for insights into the degradation mechanisms of dye-sensitized solar cells (DSSCs) containing cobalt tris(bipyridine) complexes as redox mediators. Control experiments based on aged electrolytes differing in concentrations of the redox couple components and cation co-additives were conducted to reveal the correlation of the cell degradation with external and internal properties. The failure modes of the cells emerged as changes in the kinetics of charge- and ion-transfer processes. An insufficient concentration of the redox complexes, in particular Co(III), was found to be the main reason for the inferior performance after ageing. The related characterization of electrolytes aged outside the solar cell devices confirms the loss of active Co(III) complexes in the device electrolytes. A new EIS feature at low frequencies emerged during ageing and was analysed. The new EIS feature demonstrates the presence of an unexpected rate-limiting, charge-transfer process in aged devices, which can be attributed to the TiO2/electrolyte interface. High-resolution fluorescence detected X-ray absorption spectroscopy (HERFD-XAS) was performed to identify the reduction of a part of Co(III) to Co(II) after ageing, by investigating the Co K absorption edge. The HERFD-XAS data suggested a partial reduction of Co(III) to Co(II), accompanied by a difference in symmetry of the reduced species.

8.
Phys Chem Chem Phys ; 24(48): 29850-29861, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468421

RESUMO

To gain a deeper understanding of the underlying charge processes in dye sensitized photocathodes, lateral electron hopping across dye-sensitized NiO photocathodes was investigated. For dye-sensitized systems, hole hopping across photoanodes has been studied extensively in the literature but no expansive studies on electron hopping in sensitized photocathodes exist today. Therefore, an organic p-type dye (TIP) with donor-linker-acceptor design, showing high stability and electrochemical reversibility, was used to study the electron transfer dynamics (electron-hopping) between dyes with temperature dependent spectroelectrochemistry and computational simulations. Besides intermolecular electron-hopping across the surface with a rate constant in the order of 105 s-1, our results show a second electron hopping pathway between NiO surface states with a rate constant in the order of 107 s-1, which precedes the electron hopping between the dyes. Upon application of a potential step negative enough to reduce both the dye and NiO surface states, the majority of NiO surface states need to be reduced before intermolecular electron transfer can take place. The results indicate that, in contrast to sensitized photoanodes where intermolecular charge transfer is known to influence recombination kinetics, intermolecular charge transport processes in TIP dye sensitized NiO photocathodes is less relevant because the fast electron transport between NiO surface states likely dominates recombination kinetics.

9.
Phys Chem Chem Phys ; 23(48): 27171-27184, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34635889

RESUMO

The charge-transport dynamics at the dye-TiO2 interface plays a vital role for the resulting power conversion efficiency (PCE) of dye sensitized solar cells (DSSCs). In this work, we have investigated the charge-exchange dynamics for a series of organic dyes, of different complexity, and a small model of the semiconductor substrate TiO2. The dyes studied involve L1, D35 and LEG4, all well-known organic dyes commonly used in DSSCs. The computational studies have been based on ab initio molecular dynamics (aiMD) simulations, from which structural snapshots have been collected. Estimates of the charge-transfer rate constants of the central exchange processes in the systems have been computed. All dyes show similar properties, and differences are mainly of quantitative character. The processes studied were the electron injection from the photoexcited dye, the hole transfer from TiO2 to the dye and the recombination loss from TiO2 to the dye. It is notable that the electronic coupling/transfer rates differ significantly between the snapshot configurations harvested from the aiMD simulations. The differences are significant and indicate that a single geometrically optimized conformation normally obtained from static quantum-chemistry calculations may provide arbitrary results. Both protonated and deprotonated dye systems were studied. The differences mainly appear in the rate constant of recombination loss between the protonated and the deprotonated dyes, where recombination losses take place at significantly higher rates. The inclusion of lithium ions close to the deprotonated dye carboxylate anchoring group mitigates recombination in a similar way as when protons are retained at the carboxylate group. This may give insight into the performance-enchancing effects of added salts of polarizing cations to the DSSC electrolyte. In addition, solvent effects can retard charge recombination by about two orders of magnitude, which demonstrates that the presence of a solvent will increase the lifetime of injected electrons and thus contribute to a higher PCE of DSSCs. It is also notable that no simple correlation can be identified between high/low transfer rate constants and specific structural arrangements in terms of atom-atom distances, angles or dihedral arrangements of dye sub-units.

10.
Phys Chem Chem Phys ; 23(38): 22160-22173, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34581338

RESUMO

Surface defects influence the dye adsorption on TiO2 used as a substrate in dye-sensitized solar cells (DSSCs). In this study, we have used different Ar+ sputtering doses to create a controlled density of defects on a TiO2 surface exposed to different pre-heating temperatures in order to analyse the influence of defects on the N719 dye adsorption. TiO2 was pre-treated using two different treatments. The first treatment involved heating to 200 °C with subsequent sputtering at different doses. The second treatment included heating only, but at four different temperatures starting at 200 °C. After the pre-treatments, the TiO2 samples were immersed into an N719 dye solution for 24 hours at room temperature to dye the TiO2 substrates. The amount of Ti3+ surface defects introduced by the different pre-treatments and their influence on dye adsorption onto the TiO2 surface were examined by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and metastable induced electron spectroscopy (MIES). Neutral impact collision ion scattering spectroscopy (NICISS) was used to determine the coverage of the TiO2 surface by adsorbed dye molecules. It was found that Ti3+ surface defects were formed by Ar+ sputtering but not by pre-treatment through heating alone. MIES analysis of the outer-most layer and density of states calculations show that the thiocyanate ligand of the N719 dye becomes directed away from the TiO2 surface. Both XPS and NICISS results indicate that the amount of adsorbed N719 dye decreases with increasing density of Ti3+ surface defects. Thus, the generation of surface defects reduces the ability of the TiO2 surface to adsorb the dye molecules. Heating alone as pre-treatment of the TiO2 substrates instead increases the dye adsorption, without causing detectable defects on the TiO2 surface.

11.
J Am Chem Soc ; 142(43): 18437-18448, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33054186

RESUMO

Low-dimensional hybrid perovskite materials offer significantly improved stability as well as an extensive compositional space to explore. However, they suffer from poor photovoltaic performance as compared to the 3D perovskite materials because of poor charge-transport properties. Herein, we present the concept of internal dye-sensitized hybrid perovskite compounds involving five novel low-dimensional perovskite-type materials 1-5 incorporating triarylmethane, phenazinium and near-infrared (NIR) cyanine cationic dyes, respectively. The synthesis characterization and theoretical analysis of these compounds are presented. Theoretical calculations provide interesting insights into the effects of these dyes on the band structure of the low-dimensional anionic metal-halides and especially highlight compound 1 as a promising photovoltaic candidate. Solar cell investigation of devices based on 1 were conducted. The results show an average power conversion efficiency (PCE) of about 0.1%, which is among the highest reported for a 1D material despite the use of undoped Spiro-OMeTAD as the hole-transport material (HTM). Incident photon-to-electron efficiency (IPCE) spectra confirm the contribution of the dye to the overall photocurrent of the solar cell. Moreover, examination of solar cell devices based on the bismuth-based compound 5 resulted in PCEs in the range of 0.1%. This illustrates the potential of this concept to be exploited for lead-free photovoltaics. Finally automated robotized screening of low-dimensional hybrid perovskite materials through the screening robot PROTEUS has emerged as a powerful tool in the search for novel perovskite-like materials. Our work highlights that the use of cationic dyes could induce interesting sensitizing properties to low-dimensional metal-halide chains and may therefore provide inspiration and new design strategies for the synthesis of new lead-free photovoltaic materials.

12.
J Am Chem Soc ; 142(41): 17681-17692, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32924464

RESUMO

Conjugated polymers are regarded as promising candidates for dopant-free hole-transport materials (HTMs) in efficient and stable perovskite solar cells (PSCs). Thus far, the vast majority of polymeric HTMs feature structurally complicated benzo[1,2-b:4,5-b']dithiophene (BDT) analogs and electron-withdrawing heterocycles, forming a strong donor-acceptor (D-A) structure. Herein, a new class of phenanthrocarbazole (PC)-based polymeric HTMs (PC1, PC2, and PC3) has been synthesized by inserting a PC unit into a polymeric thiophene or selenophene chain with the aim of enhancing the π-π stacking of adjacent polymer chains and also to efficiently interact with the perovskite surface through the broad and planar conjugated backbone of the PC. Suitable energy levels, excellent thermostability, and humidity resistivity together with remarkable photoelectric properties are obtained via meticulously tuning the conformation and elemental composition of the polymers. As a result, PSCs containing PC3 as dopant-free HTM show a stabilized power conversion efficiency (PCE) of 20.8% and significantly enhanced longevity, rendering one of the best types of PSCs based on dopant-free HTMs. Subsequent experimental and theoretical studies reveal that the planar conformation of the polymers contributes to an ordered and face-on stacking of the polymer chains. Furthermore, introduction of the "Lewis soft" selenium atom can passivate surface trap sites of perovskite films by Pb-Se interaction and facilitate the interfacial charge separation significantly. This work reveals the guiding principles for rational design of dopant-free polymeric HTMs and also inspires rational exploration of small molecular HTMs.

14.
J Am Chem Soc ; 141(50): 19700-19707, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31747277

RESUMO

Perovskite solar cells (PSCs) has skyrocketed in the past decade to an unprecedented level due to their outstanding photoelectric properties and facile processability. However, the utilization of expensive hole transport materials (HTMs) and the inevitable instability instigated by the deliquescent dopants represent major concerns hindering further commercialization. Here, a series of low-cost, conjugated polymers are designed and applied as dopant-free HTMs in PSCs, featuring tuned energy levels, good temperature and humidity resistivity, and excellent photoelectric properties. Further studies highlight the critical and multifaceted roles of the polymers with respect to facilitating charge separation, passivating the surface trap sites of perovskite materials, and guaranteeing long-term stability of the devices. A stabilized power conversion efficiency (PCE) of 20.3% and remarkably enhanced device longevity are achieved using the dopant-free polymer P3 with a low concentration of 5 mg/mL, qualifying the device as one of the best PSC systems constructed on the basis of dopant-free HTMs so far. In addition, the flexible PSCs based on P3 also exhibit a PCE of 16.2%. This work demonstrates a promising route toward commercially viable, stable, and efficient PSCs.

15.
Chemphyschem ; 20(4): 618-626, 2019 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-30623544

RESUMO

The excited state dynamics of Tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate, [Ru(bpy)3 (PF6 )2 ], was investigated on the surface of bare and sensitized TiO2 and ZrO2 films. The organic dyes LEG4 and MKA253 were selected as sensitizers. A Stern-Volmer plot of LEG4-sensitized TiO2 substrates with a spin-coated [Ru(bpy)3 (PF6 )2 ] layer on top shows considerable quenching of the emission of the latter. Interestingly, time-resolved emission spectroscopy reveals the presence of a fast-decay time component (25±5 ns), which is absent when the anatase TiO2 semiconductor is replaced by ZrO2 . It should be specified that the positive redox potential of the ruthenium complex prevents electron transfer from the [Ru(bpy)3 (PF6 )2 ] ground state into the oxidized sensitizer. Therefore, we speculate that the fast-decay time component observed stems from excited-state electron transfer from [Ru(bpy)3 (PF6 )2 ] to the oxidized sensitizer. Solid-state dye sensitized solar cells (ssDSSCs) employing MKA253 and LEG4 dyes, with [Ru(bpy)3 (PF6 )2 ] as a hole-transporting material (HTM), exhibit 1.2 % and 1.1 % power conversion efficiency, respectively. This result illustrates the possibility of the hypothesized excited-state electron transfer.

16.
Inorg Chem ; 58(18): 12167-12177, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31483631

RESUMO

Due to ligand scrambling, the synthesis and investigation of the properties of heteroleptic Cu(I) complexes can be a challenging task. In this work, we have studied the optical and electrochemical properties of a series of homoleptic complexes, such as [Cu(dbda)2]+, [Cu(dmp)2]+, [Cu(Br-dmp)2]+, [Cu(bcp)2]+, [Cu(dsbtmp)2]+, [Cu(biq)2]+, and [Cu(dap)2]+ in solution, and those of their heteroleptics [Cu(dbda)(dmp)]+, [Cu(dbda)(Br-dmp)]+, [Cu(dbda)(bcp)]+, [Cu(dbda)(dsbtmp)]+, [Cu(dbda)(biq)]+, [Cu(dbda)(dap)]+ adsorbed on the surface of anatase TiO2 (dbda = 6,6'-dimethyl-2,2'-bipyridine-4,4'-dibenzoic acid; dmp = 2,9-dimethyl-1,10-phenanthroline; Br-dmp = 5-bromo-2,9-dimethyl-1,10-phenanthroline; bcp = bathocuproine or 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline; dsbtmp = 2,9-di(sec-butyl)-3,4,7,8-tetramethyl-1,10-phenanthroline; biq = 2,2'-biquinoline; dap = 2,9-dianisyl-1,10-phenanthroline). We show that the maximum absorption wavelengths of the heteroleptic complexes on TiO2 can be reasonably predicted from those of the homoleptic complexes in solution through a simple linear relation, whereas the prediction of their redox properties is less trivial. In the latter case, two different linear patterns emerge: one including the ligands bcp, biq, and dap and another one including the ligands dmp, Br-dmp, and dsbtmp. We offer an interpretation of the data based on the chemical structure of the ligands. On one hand, ligands bcp, biq, and dap possess a more extended π-conjugated system, which gives a more prominent contribution to the overall redox properties of the ligand dbda. On the other hand, the ligands dmp, Br-dmp, and dsbtmp are all phenanthroline-based containing alkyl substituents and contribute less than dbda to the overall redox properties.

17.
Chemphyschem ; 19(9): 1041-1047, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29451358

RESUMO

Cross-linked polymers of elemental sulfur are of potential interest for electronic applications as they enable facile thin-film processing of an abundant and inexpensive starting material. Here, we characterize the electronic structure of a cross-linked sulfur/diisopropenyl benzene (DIB) polymer by a combination of soft and hard X-ray photoelectron spectroscopy (SOXPES and HAXPES). Two different approaches for enhancing the conductivity of the polymer are compared: the addition of selenium in the polymer synthesis and the addition of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) during film preparation. For the former, we observe the incorporation of Se into the polymer structure resulting in a changed valence-band structure. For the latter, a Fermi level shift in agreement with p-type doping of the polymer is observed and also the formation of a surface layer consisting mostly of TFSI anions.

18.
Inorg Chem ; 57(8): 4556-4562, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29608296

RESUMO

The reaction of CuCl2 with 2,9-dimethyl-1,10-phenanthroline (dmp) does not lead to the formation of [Cu(dmp)2](Cl)2 but instead to [Cu(dmp)2Cl]Cl, a 5-coordinated complex, in which one chloride is directly coordinated to the metal center. Attempts at removing the coordinated chloride by changing the counterion by metathesis were unsuccessful and resulted only in the exchange of the noncoordinated chloride, as confirmed from a crystal structure analysis. Complex [Cu(dmp)2Cl]PF6 exhibits a reversible cyclic voltammogram characterized by a significant peak splitting between the reductive and oxidative waves (0.85 and 0.60 V vs NHE, respectively), with a half-wave potential E1/2 = 0.73 V vs NHE. When reduced electrochemically, the complex does not convert into [Cu(dmp)2]+, as one may expect. Instead, [Cu(dmp)2]+ is isolated as a product when the reduction of [Cu(dmp)2Cl]PF6 is performed with l-ascorbic acid, as confirmed by electrochemistry, NMR spectroscopy, and diffractometry. [Cu(dmp)2]2+ complexes can be synthesized starting from Cu(II) salts with weakly and noncoordinating counterions, such as perchlorate. Growth of [Cu(dmp)2](ClO4)2 crystals in acetonitrile results in a 5-coordinated complex, [Cu(dmp)2(CH3CN)](ClO4)2, in which a solvent molecule is coordinated to the metal center. However, solvent coordination is associated with a dynamic decoordination-coordination behavior upon reduction and oxidation. Hence, the cyclic voltammogram of [Cu(dmp)2(CH3CN)]2+ is identical to the one of [Cu(dmp)2]+, if the measurements are performed in acetonitrile. The current results show that halide ions in precursors to Cu(II) metal-organic coordination compound synthesis, and most likely also other multivalent coordination centers, are not readily exchanged when exposed to presumed strongly binding and chelating ligand, and thus special care needs to be taken with respect to product characterization.

20.
Phys Chem Chem Phys ; 16(2): 711-8, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24263223

RESUMO

Concentration depth profiles of the ruthenium based dyes Z907 and N719 adsorbed onto titania are measured directly and used for determining the adsorption isotherm of the dyes. Dye layers formed by both grow in islands on the titania which do not cover the entire titania surface even at the maximum coverage. Impedance spectroscopy in conjunction with the adsorption isotherms shows that recombination losses mainly appear between the dye and the electrolyte solution. The short circuit current and the efficiency increase linearly with the dye coverage. The open circuit voltage slightly increases with increasing dye coverage which is interpreted as most likely to be a consequence of the higher charge in the particles upon higher dye loading on the TiO2 surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA