Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118634, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452915

RESUMO

Several human studies indicate that mobile phone specific electromagnetic fields may cause cancer in humans but the underlying molecular mechanisms are currently not known. Studies concerning chromosomal damage (which is causally related to cancer induction) are controversial and those addressing this issue in mobile phone users are based on the use of questionnaires to assess the exposure. We realized the first human intervention trial in which chromosomal damage and acute toxic effects were studied under controlled conditions. The participants were exposed via headsets at one randomly assigned side of the head to low and high doses of a UMTS signal (n = 20, to 0.1 W/kg and n = 21 to 1.6 W/kg Specific Absorption Rate) for 2 h on 5 consecutive days. Before and three weeks after the exposure, buccal cells were collected from both cheeks and micronuclei (MN, which are formed as a consequence of structural and numerical chromosomal aberrations) and other nuclear anomalies reflecting mitotic disturbance and acute cytotoxic effects were scored. We found no evidence for induction of MN and of nuclear buds which are caused by gene amplifications, but a significant increase of binucleated cells which are formed as a consequence of disturbed cell divisions, and of karyolitic cells, which are indicative for cell death. No such effects were seen in cells from the less exposed side. Our findings indicate that mobile phone specific high frequency electromagnetic fields do not cause acute chromosomal damage in oral mucosa cells under the present experimental conditions. However, we found clear evidence for disturbance of the cell cycle and cytotoxicity. These effects may play a causal role in the induction of adverse long term health effects in humans.


Assuntos
Telefone Celular , Citocinese , Mucosa Bucal , Humanos , Mucosa Bucal/efeitos da radiação , Mucosa Bucal/citologia , Adulto , Masculino , Citocinese/efeitos da radiação , Morte Celular/efeitos da radiação , Adulto Jovem , Feminino , Aberrações Cromossômicas/efeitos da radiação , Testes para Micronúcleos , Campos Eletromagnéticos/efeitos adversos , Micronúcleos com Defeito Cromossômico/efeitos da radiação
2.
Carcinogenesis ; 41(10): 1318-1328, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32780106

RESUMO

Cervical cancer (CC) is the fourth most common cancer in women; the survival rates depend strongly on its early detection. The Pap test is the most frequently used diagnostic tool, but due to its limited sensitivity/specificity, additional screening tests are needed. Therefore, we evaluated the use of micronucleus (MN) assays with cervical cells for the prediction and diagnosis of CC. MN reflects structural and numerical chromosomal aberrations. A search was performed in Pubmed, Scopus, Thomson ISI and Google Scholar. Subsequently, meta-analyses were performed for different grades of abnormal findings in smears and biopsies from patients which were diagnosed with CC. Results of 21 studies in which findings of MN experiments were compared with data from Pap tests show that higher MN frequencies were found in women with abnormal cells that are indicative for increased cancer risks. MN frequency ratios increased in the order inflammation (2.1) < ASC-US and ASC-H (3.3) < LGSIL (4.4) < HGSIL (8.4). Furthermore, results are available from 17 investigations in which MN were scored in smears from patients with neoplasia. MN rates increased with the degree of neoplasia [CIN 1 (4.6) < CIN 2 (6.5) and CIN 3 (10.8)] and were significantly higher (8.8) in CC patients. Our meta-analysis indicates that the MN assay, which is easy to perform in combination with Pap tests, may be useful for the detection/prediction of CC. However, standardization (including definition of the optimal cell numbers and stains) and further validation is necessary before the MN test can be implemented in routine screening.


Assuntos
Testes para Micronúcleos , Neoplasias do Colo do Útero/diagnóstico , Feminino , Humanos , Prognóstico
3.
Ecotoxicol Environ Saf ; 206: 111397, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007538

RESUMO

During the harvest period, tobacco workers are exposed to nicotine and it is known that absorption of the alkaloid via the leaves causes green tobacco sickness (GST). We investigated if GST and its symptoms are associated with DNA damage and alterations of the redox status. DNA damage was measured in lymphocytes of tobacco workers and controls (n = 40/group) in single cell gel electrophoresis assays. Exposure to nicotine was determined by plasma cotinine measurements, alterations of the redox status by quantification of the total antioxidant capacity (TEAC) and of thiobarbituric acid reactive substances (TBARS). The symptoms of GTS included nausea, abdominal cramps, headache, vomiting and dizziness, and 50% of the workers had more than one symptom. Cotinine levels were enhanced in the workers (111 ng/mL); furthermore, the extent of DNA damage was ca. 3-fold higher than in the controls. This effect was more pronounced in participants with GST compared to healthy nicotine exposed workers and increased in individuals with specific symptoms (range 22-36%). TBARS levels did not differ between workers and unexposed controls, while TEAC values were even increased (by 14.3%). Contact with nicotine present in tobacco leaves causes GTS and leads to damage of the DNA; this effect is more pronounced in workers with GTS symptoms and is associated with alterations of the redox status. Damage of the genetic material which was found in the workers may lead to adverse long-term effects that are caused by genomic instability such as cancer and accelerated ageing.


Assuntos
Doenças dos Trabalhadores Agrícolas/induzido quimicamente , Dano ao DNA , Fazendeiros , Nicotiana/crescimento & desenvolvimento , Nicotina/toxicidade , Exposição Ocupacional/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Adulto , Doenças dos Trabalhadores Agrícolas/genética , Doenças dos Trabalhadores Agrícolas/metabolismo , Brasil , Estudos de Casos e Controles , Cotinina/sangue , Feminino , Instabilidade Genômica/efeitos dos fármacos , Humanos , Masculino , Nicotina/metabolismo , Exposição Ocupacional/análise , Oxirredução , Estresse Oxidativo/genética , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Nicotiana/metabolismo , Adulto Jovem
4.
Eur J Nutr ; 58(6): 2315-2326, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30039436

RESUMO

PURPOSE: Aim of the study was to find out if gallic acid (GA), a common phenolic in plant foods, prevents obesity induced DNA damage which plays a key role in the induction of overweight associated cancer. METHODS: Male and female C57BL6/J mice were fed with a low fat or a high fat diet (HFD). The HFD group received different doses GA (0, 2.6-20 mg/kg b.w./day) in the drinking water for 1 week. Subsequently, alterations of the genetic stability in blood and inner organs were monitored in single cell gel electrophoresis assays. To elucidate the underlying molecular mechanisms: oxidized DNA bases, alterations of the redox status, lipid and glucose metabolism, cytokine levels and hepatic NF-κB activity were monitored. RESULTS: HFD fed animals had higher body weights; increased DNA damage and oxidation of DNA bases damage were detected in colon, liver and brain but not in blood and white adipose tissue. Furthermore, elevated concentrations of insulin, glucose, triglycerides, MCP-1, TNF-α and NF-κB activity were observed in this group. Small amounts of GA, in the range of human consumption, caused DNA protection and reduced oxidation of DNA bases, as well as biochemical and inflammatory parameters. CONCLUSIONS: Obese animals have increased DNA damage due to oxidation of DNA bases. This effect is probably caused by increased levels of glucose and insulin. The effects of GA can be explained by its hypoglycaemic properties and indicate that the consumption of GA-rich foods prevents adverse health effects in obese individuals.


Assuntos
Dano ao DNA/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Gorduras na Dieta/efeitos adversos , Ácido Gálico/farmacologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
5.
Arch Toxicol ; 93(1): 179-188, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30341733

RESUMO

Cannabidiol (CBD) and cannabidivarin (CBDV) are natural cannabinoids which are consumed in increasing amounts worldwide in cannabis extracts, as they prevent epilepsy, anxiety, and seizures. It was claimed that they may be useful in cancer therapy and have anti-inflammatory properties. Adverse long-term effects of these drugs (induction of cancer and infertility) which are related to damage of the genetic material have not been investigated. Therefore, we studied their DNA-damaging properties in human-derived cell lines under conditions which reflect the exposure of consumers. Both compounds induced DNA damage in single cell gel electrophoresis (SCGE) experiments in a human liver cell line (HepG2) and in buccal-derived cells (TR146) at low levels (≥ 0.2 µM). Results of micronucleus (MN) cytome assays showed that the damage leads to formation of MNi which reflect chromosomal aberrations and leads to nuclear buds and bridges which are a consequence of gene amplifications and dicentric chromosomes. Additional experiments indicate that these effects are caused by oxidative base damage and that liver enzymes (S9) increase the genotoxic activity of both compounds. Our findings show that low concentrations of CBD and CBDV cause damage of the genetic material in human-derived cells. Furthermore, earlier studies showed that they cause chromosomal aberrations and MN in bone marrow of mice. Fixation of damage of the DNA in the form of chromosomal damage is generally considered to be essential in the multistep process of malignancy, therefore the currently available data are indicative for potential carcinogenic properties of the cannabinoids.


Assuntos
Canabinoides/toxicidade , Aberrações Cromossômicas , Dano ao DNA , Animais , Canabidiol/toxicidade , Linhagem Celular , Células Hep G2 , Humanos , Masculino , Testes para Micronúcleos , Mutagênicos/toxicidade , Ratos Sprague-Dawley
6.
J Toxicol Environ Health A ; 82(17): 969-976, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31596695

RESUMO

Road markers are exposed to various chemicals and particles. The aim of this study was to determine whether road worker exposure induceschromosomal damage which is indicative for increased cancer risks. Micronucleus (MN) cytome assays were thus conducted with exfoliated nasal and buccal cells collected from 42 workers and 42 matched controls. The frequencies of MN (reflecting chromosomal aberrations), nuclear buds (NBuds; reflecting gene amplifications) and binucleated cells (BN; reflecting disturbed mitosis) were scored. Further, the rates of nuclear anomalies indicative of acute cytotoxicity (condensed chromatin, karyorrhexis, karyolysis, pyknosis) were evaluated. Data demonstrated marked induction of MN, NBuds, and BN by 1.34-fold, 1.24-fold and 1.14-fold in buccal cells. In nasal cells, only MN frequencies were elevated, 1.23-fold. These effects were paralleled by increased rates of condensed chromatin, karyorrhexis and karyolysis in both cell types. The effects were more pronounced in individuals who had worked for more than 10 years while smoking did not produce synergistic responses. This is the first investigation concerning the induction of genetic damage in road markers and the results are suggestive for enhanced cancer risks. It is conceivable that exposure to silica dust (known to induce cancer and genetic damage) and/or benzoyl peroxide which forms reactive radicals may be associated with the observed genetic damage in road workers. Further investigations of the cancer risks of these workers are warranted.


Assuntos
Peróxido de Benzoíla/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Mucosa Bucal/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Neoplasias/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Dióxido de Silício/toxicidade , Adulto , Biomarcadores , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco
7.
Carcinogenesis ; 39(2): 146-157, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29106440

RESUMO

Microsatellite instability (MSI) is present in ulcerative colitis (UC) and colitis-associated colorectal cancers (CAC). Certain factors released by polymorphonuclear cells (PMNs) may drive mucosal frameshift mutations resulting in MSI and cancer. Here, we applied a co-culture system with PMNs and colon epithelial cells to identify such culprit factors. Subjecting HCT116 + chr3 and human colonic epithelial cells (HCEC)-1CT MSI-reporter cell lines harboring mono-, di- or tetranucleotide DNA repeats linked to enhanced green fluorescent protein (EGFP) to activated PMNs induced frameshift mutations within all repeats, as quantified by flow cytometry. Activated PMNs released superoxide and hydrogen peroxide (H2O2), as measured by lucigenin-amplified chemiluminescence and fluorometry, respectively. Catalase, which scavenges H2O2, reduced such PMN-induced MSI. The NADPH-oxidase inhibitor apocynin, which blocks the oxidative burst in PMNs, similarly inhibited PMN-induced MSI. A bead-based multiplex assay revealed that PMNs release a wide range of cytokines such as interleukin (IL)-8, IL-6 and tumor necrosis factor-α (TNF-α). In vitro, these cytokines increased MSI in colon epithelial cells, and the Janus kinase (JAK) inhibitor tofacitinib abolished IL-6-induced or PMN-induced MSI. Intracellular reactive oxygen species (ROS) formation, as measured by 2',7'-dichlorofluorescein diacetate (DCFDA) assay, was induced upon cytokine treatment. DNA oxidation upon IL-6 was present, as detected by formamidopyrimidine glycosylase (FPG)-modified comet assay. In conclusion, activated PMNs induce frameshift mutations in colon epithelial cells resulting in MSI. Both oxidative burst with release of ROS and PMN-secreted cytokines, such as IL-8, IL-6 or TNF-α, contribute to MSI. ROS scavengers and/or specific inhibitors of cytokine signaling may delay or prevent cancer development in the setting of colitis.


Assuntos
Colite/complicações , Neoplasias Colorretais/etiologia , Instabilidade de Microssatélites , Mutagênese/fisiologia , Neutrófilos/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Colite/metabolismo , Citocinas/metabolismo , Mutação da Fase de Leitura , Humanos , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo
8.
Arch Toxicol ; 92(2): 921-934, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29218508

RESUMO

Cell lines which are currently used in genotoxicity tests lack enzymes which activate/detoxify mutagens. Therefore, rodent-derived liver preparations are used which reflect their metabolism in humans only partly; as a consequence misleading results are often obtained. Previous findings suggest that certain liver cell lines express phase I/II enzymes and detect promutagens without activation; however, their use is hampered by different shortcomings. The aim of this study was the identification of a suitable cell line. The sensitivity of twelve hepatic cell lines was investigated in single cell gel electrophoresis assays. Furthermore, characteristics of these lines were studied which are relevant for their use in genotoxicity assays (mitotic activity, p53 status, chromosome number, and stability). Three lines (HuH6, HCC1.2, and HepG2) detected representatives of five classes of promutagens, namely, IQ and PhIP (HAAs), B(a)P (PAH), NDMA (nitrosamine), and AFB1 (aflatoxin), and were sensitive towards reactive oxygen species (ROS). In contrast, the commercially available line HepaRG, postulated to be a surrogate for hepatocytes and an ideal tool for mutagenicity tests, did not detect IQ and was relatively insensitive towards ROS. All other lines failed to detect two or more compounds. HCC1.2 cells have a high and unstable chromosome number and mutated p53, these features distract from its use in routine screening. HepG2 was frequently employed in earlier studies, but pronounced inter-laboratory variations were observed. HuH6 was never used in genotoxicity experiments and is highly promising, it has a stable karyotype and we demonstrated that the results of genotoxicity experiments are reproducible.


Assuntos
Fígado/diagnóstico por imagem , Testes de Mutagenicidade/métodos , Mutagênicos/análise , Aflatoxina B1/toxicidade , Benzo(a)pireno/toxicidade , Linhagem Celular Tumoral , Dimetilnitrosamina/toxicidade , Humanos , Peróxido de Hidrogênio/toxicidade , Imidazóis/toxicidade , Inativação Metabólica , Fígado/citologia , Quinolinas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética
9.
J Toxicol Environ Health A ; 80(13-15): 651-660, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28524814

RESUMO

Results of a number of studies indicate that electroplaters have increased cancer risks as a consequence of exposure to genotoxic metals such as chromium (VI) and nickel. These effects may be due to induction of damage of the genetic material which plays a key role in the etiology of cancer, and it was found that workers in galvanization factories exhibited increased levels of DNA damage. The aim of the present study was to investigate genetic stability in workers of a bright plating factory who are exposed to chromium (Cr) and cobalt (Co). Exfoliated cells were collected from the buccal and nasal mucosa of workers (n = 42) and matched controls (n = 43) and analyzed for induction of micronuclei (MN) which are formed as a consequence of chromosomal aberrations. In addition, other nuclear anomalies namely nuclear buds (Nbuds) which are formed as a consequence of gene amplification and markers indicating different stages of cell death (condensed chromatin, karyorrhexis, karyolysis, and pyknosis) were also assessed. No evidence was noted for induction of MN, but significantly increased rates of Nbuds in cells from both, buccal and nasal mucosa, were found. Parameters which are indicative for cytotoxic effects were more pronounced in nasal cells and rose with duration of employment period. Overall, our findings indicated that no apparent chromosomal damage occurred in bright electroplaters. However, data demonstrated that acute cytotoxic effects may lead to inflammations and/or lesions in epithelia of the respiratory tract of the workers.


Assuntos
Cromo/toxicidade , Cobalto/toxicidade , Galvanoplastia , Mucosa Bucal/efeitos dos fármacos , Mucosa Nasal/efeitos dos fármacos , Exposição Ocupacional/efeitos adversos , Adulto , Morte Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Cromossomos Humanos/efeitos dos fármacos , Feminino , Humanos , Masculino , Micronúcleos com Defeito Cromossômico/induzido quimicamente
10.
Arch Toxicol ; 90(6): 1369-82, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26194647

RESUMO

Synthetic cannabinoids (SCs) are marketed worldwide as legal surrogates for marihuana. In order to predict potential health effects in consumers and to elucidate the underlying mechanisms of action, we investigated the impact of a representative of the cyclohexylphenols, CP47,497-C8, which binds to both cannabinoid receptors, on protein expression patterns, genomic stability and on induction of inflammatory cytokines in human lymphocytes. After treatment of the cells with the drug, we found pronounced up-regulation of a variety of enzymes in nuclear extracts which are involved in lipid metabolism and inflammatory signaling; some of the identified proteins are also involved in the endogenous synthesis of endocannabinoids. The assumption that the drug causes inflammation is further supported by results obtained in additional experiments with cytosols of LPS-stimulated lymphocytes which showed that the SC induces pro-inflammatory cytokines (IL12p40 and IL-6) as well as TNF-α. Furthermore, the proteome analyses revealed that the drug causes down-regulation of proteins which are involved in DNA repair. This observation provides an explanation for the formation of comets which was seen in single-cell gel electrophoresis assays and for the induction of micronuclei (which reflect structural and numerical chromosomal aberrations) by the drug. These effects were seen in experiments with human lymphocytes which were conducted under identical conditions as the proteome analysis. Taken together, the present findings indicate that the drug (and possibly other structurally related SCs) may cause DNA damage and inflammation in directly exposed cells of consumers.


Assuntos
Canabinoides/toxicidade , Cicloexanóis/toxicidade , Citocinas/biossíntese , Dano ao DNA , Leucócitos Mononucleares/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Proteínas Nucleares/biossíntese , Fenóis/toxicidade , Adulto , Células Cultivadas , Cromatografia Líquida , Ensaio Cometa , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Linfócitos/imunologia , Masculino , Espectrometria de Massas , Análise Serial de Proteínas , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/imunologia , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA