Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Cell ; 185(14): 2393-2395, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803241

RESUMO

The ileal brake is an important reflex that ensures proper absorption of nutrients. This involves intestinal GLP-1 release, which recruits an enteric-sympathetic-spinal pathway to inhibit gastric motility and appetite. This visceral alarm system could be targeted to treat obesity and gastrointestinal dysfunction.


Assuntos
Gastroenteropatias , Peptídeo 1 Semelhante ao Glucagon , Encéfalo , Humanos , Íleo , Obesidade
2.
Cell ; 179(5): 1129-1143.e23, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730854

RESUMO

Energy homeostasis requires precise measurement of the quantity and quality of ingested food. The vagus nerve innervates the gut and can detect diverse interoceptive cues, but the identity of the key sensory neurons and corresponding signals that regulate food intake remains unknown. Here, we use an approach for target-specific, single-cell RNA sequencing to generate a map of the vagal cell types that innervate the gastrointestinal tract. We show that unique molecular markers identify vagal neurons with distinct innervation patterns, sensory endings, and function. Surprisingly, we find that food intake is most sensitive to stimulation of mechanoreceptors in the intestine, whereas nutrient-activated mucosal afferents have no effect. Peripheral manipulations combined with central recordings reveal that intestinal mechanoreceptors, but not other cell types, potently and durably inhibit hunger-promoting AgRP neurons in the hypothalamus. These findings identify a key role for intestinal mechanoreceptors in the regulation of feeding.


Assuntos
Comportamento Alimentar/fisiologia , Fenômenos Genéticos , Células Receptoras Sensoriais/fisiologia , Nervo Vago/fisiologia , Proteína Relacionada com Agouti/metabolismo , Animais , Encéfalo/fisiologia , Trato Gastrointestinal/inervação , Marcadores Genéticos , Mecanorreceptores/metabolismo , Camundongos , Nervo Vago/anatomia & histologia , Vísceras/inervação
3.
Cell ; 167(1): 47-59.e15, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27616062

RESUMO

Thermoregulation is one of the most vital functions of the brain, but how temperature information is converted into homeostatic responses remains unknown. Here, we use an unbiased approach for activity-dependent RNA sequencing to identify warm-sensitive neurons (WSNs) within the preoptic hypothalamus that orchestrate the homeostatic response to heat. We show that these WSNs are molecularly defined by co-expression of the neuropeptides BDNF and PACAP. Optical recordings in awake, behaving mice reveal that these neurons are selectively activated by environmental warmth. Optogenetic excitation of WSNs triggers rapid hypothermia, mediated by reciprocal changes in heat production and loss, as well as dramatic cold-seeking behavior. Projection-specific manipulations demonstrate that these distinct effectors are controlled by anatomically segregated pathways. These findings reveal a molecularly defined cell type that coordinates the diverse behavioral and autonomic responses to heat. Identification of these warm-sensitive cells provides genetic access to the core neural circuit regulating the body temperature of mammals. PAPERCLIP.


Assuntos
Regulação da Temperatura Corporal/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Regulação da Expressão Gênica , Temperatura Alta , Neurônios/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Núcleo Hipotalâmico Ventromedial/citologia , Animais , Comportamento Animal , Camundongos , Microdissecção , Neurônios/metabolismo , Optogenética , RNA Mensageiro/genética , Proteína S6 Ribossômica/metabolismo , Análise de Sequência de RNA , Núcleo Hipotalâmico Ventromedial/metabolismo
4.
Cell ; 160(5): 829-841, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25703096

RESUMO

Hunger is controlled by specialized neural circuits that translate homeostatic needs into motivated behaviors. These circuits are under chronic control by circulating signals of nutritional state, but their rapid dynamics on the timescale of behavior remain unknown. Here, we report optical recording of the natural activity of two key cell types that control food intake, AgRP and POMC neurons, in awake behaving mice. We find unexpectedly that the sensory detection of food is sufficient to rapidly reverse the activation state of these neurons induced by energy deficit. This rapid regulation is cell-type specific, modulated by food palatability and nutritional state, and occurs before any food is consumed. These data reveal that AgRP and POMC neurons receive real-time information about the availability of food in the external world, suggesting a primary role for these neurons in controlling appetitive behaviors such as foraging that promote the discovery of food.


Assuntos
Comportamento Alimentar , Vias Neurais , Neurônios/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Comportamento Apetitivo , Ingestão de Alimentos , Fome , Hipotálamo/metabolismo , Camundongos , Fotometria/métodos , Pró-Opiomelanocortina/metabolismo
5.
Cell ; 157(5): 1230-42, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855954

RESUMO

The complexity and cellular heterogeneity of neural circuitry presents a major challenge to understanding the role of discrete neural populations in controlling behavior. While neuroanatomical methods enable high-resolution mapping of neural circuitry, these approaches do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of an approach for molecularly profiling projective neurons. We show that ribosomes can be tagged with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from neurons retrogradely labeled with GFP. Using this system, we profiled neurons projecting to the nucleus accumbens. We then used an AAV to selectively profile midbrain dopamine neurons projecting to the nucleus accumbens. By comparing the captured mRNAs from each experiment, we identified a number of markers specific to VTA dopaminergic projection neurons. The current method provides a means for profiling neurons based on their projections.


Assuntos
Proteínas de Fluorescência Verde/análise , Neurobiologia/métodos , Neuroimagem/métodos , Neurônios/citologia , Ribossomos/química , Animais , Anticorpos/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Camundongos Transgênicos , Núcleo Accumbens/citologia , Biossíntese de Proteínas
6.
Nature ; 624(7990): 130-137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993711

RESUMO

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Assuntos
Regulação do Apetite , Tronco Encefálico , Ingestão de Alimentos , Retroalimentação Fisiológica , Alimentos , Saciação , Estômago , Regulação do Apetite/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Ingestão de Alimentos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Saciação/fisiologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Estômago/fisiologia , Paladar/fisiologia , Fatores de Tempo , Animais , Camundongos
7.
Nature ; 608(7922): 374-380, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35831501

RESUMO

Food and water are rewarding in part because they satisfy our internal needs1,2. Dopaminergic neurons in the ventral tegmental area (VTA) are activated by gustatory rewards3-5, but how animals learn to associate these oral cues with the delayed physiological effects of ingestion is unknown. Here we show that individual dopaminergic neurons in the VTA respond to detection of nutrients or water at specific stages of ingestion. A major subset of dopaminergic neurons tracks changes in systemic hydration that occur tens of minutes after thirsty mice drink water, whereas different dopaminergic neurons respond to nutrients in the gastrointestinal tract. We show that information about fluid balance is transmitted to the VTA by a hypothalamic pathway and then re-routed to downstream circuits that track the oral, gastrointestinal and post-absorptive stages of ingestion. To investigate the function of these signals, we used a paradigm in which a fluid's oral and post-absorptive effects can be independently manipulated and temporally separated. We show that mice rapidly learn to prefer one fluid over another based solely on its rehydrating ability and that this post-ingestive learning is prevented if dopaminergic neurons in the VTA are selectively silenced after consumption. These findings reveal that the midbrain dopamine system contains subsystems that track different modalities and stages of ingestion, on timescales from seconds to tens of minutes, and that this information is used to drive learning about the consequences of ingestion.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Hipotálamo , Vias Neurais , Nutrientes , Estado de Hidratação do Organismo , Área Tegmentar Ventral , Animais , Sinais (Psicologia) , Digestão , Dopamina/metabolismo , Neurônios Dopaminérgicos/fisiologia , Ingestão de Alimentos , Trato Gastrointestinal/metabolismo , Hipotálamo/citologia , Hipotálamo/fisiologia , Mesencéfalo/citologia , Mesencéfalo/fisiologia , Camundongos , Nutrientes/metabolismo , Estado de Hidratação do Organismo/efeitos dos fármacos , Recompensa , Fatores de Tempo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/fisiologia , Água/metabolismo , Água/farmacologia , Equilíbrio Hidroeletrolítico
8.
Cell ; 151(5): 1126-37, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178128

RESUMO

The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, thereby enriching directly for the mRNAs expressed in discrete subpopulations of activated cells. We use this approach to identify neurons in the hypothalamus regulated by changes in salt balance or food availability. We show that galanin neurons are activated by fasting and that prodynorphin neurons restrain food intake during scheduled feeding. These studies identify elements of the neural circuit that controls food intake and illustrate how the activity-dependent capture of cell-type-specific transcripts can elucidate the functional organization of a complex tissue.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Ribossomos/metabolismo , Transcriptoma , Animais , Encéfalo/citologia , Jejum , Comportamento Alimentar , Hipotálamo/citologia , Hipotálamo/metabolismo , Camundongos , Fosforilação , Proteína S6 Ribossômica/metabolismo
9.
Nature ; 568(7750): 98-102, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30918408

RESUMO

Satiation is the process by which eating and drinking reduce appetite. For thirst, oropharyngeal cues have a critical role in driving satiation by reporting to the brain the volume of fluid that has been ingested1-12. By contrast, the mechanisms that relay the osmolarity of ingested fluids remain poorly understood. Here we show that the water and salt content of the gastrointestinal tract are precisely measured and then rapidly communicated to the brain to control drinking behaviour in mice. We demonstrate that this osmosensory signal is necessary and sufficient for satiation during normal drinking, involves the vagus nerve and is transmitted to key forebrain neurons that control thirst and vasopressin secretion. Using microendoscopic imaging, we show that individual neurons compute homeostatic need by integrating this gastrointestinal osmosensory information with oropharyngeal and blood-borne signals. These findings reveal how the fluid homeostasis system monitors the osmolarity of ingested fluids to dynamically control drinking behaviour.


Assuntos
Encéfalo/fisiologia , Ingestão de Líquidos/fisiologia , Trato Gastrointestinal/fisiologia , Neurônios/fisiologia , Saciação/fisiologia , Sede/fisiologia , Animais , Encéfalo/citologia , Feminino , Neurônios GABAérgicos/metabolismo , Trato Gastrointestinal/inervação , Glutamatos/metabolismo , Masculino , Camundongos , Orofaringe/inervação , Orofaringe/fisiologia , Concentração Osmolar , Prosencéfalo/metabolismo , Nervo Vago/fisiologia , Vasopressinas/metabolismo
10.
Nature ; 545(7655): 477-481, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28514446

RESUMO

In humans and other mammalian species, lesions in the preoptic area of the hypothalamus cause profound sleep impairment, indicating a crucial role of the preoptic area in sleep generation. However, the underlying circuit mechanism remains poorly understood. Electrophysiological recordings and c-Fos immunohistochemistry have shown the existence of sleep-active neurons in the preoptic area, especially in the ventrolateral preoptic area and median preoptic nucleus. Pharmacogenetic activation of c-Fos-labelled sleep-active neurons has been shown to induce sleep. However, the sleep-active neurons are spatially intermingled with wake-active neurons, making it difficult to target the sleep neurons specifically for circuit analysis. Here we identify a population of preoptic area sleep neurons on the basis of their projection target and discover their molecular markers. Using a lentivirus expressing channelrhodopsin-2 or a light-activated chloride channel for retrograde labelling, bidirectional optogenetic manipulation, and optrode recording, we show that the preoptic area GABAergic neurons projecting to the tuberomammillary nucleus are both sleep active and sleep promoting. Furthermore, translating ribosome affinity purification and single-cell RNA sequencing identify candidate markers for these neurons, and optogenetic and pharmacogenetic manipulations demonstrate that several peptide markers (cholecystokinin, corticotropin-releasing hormone, and tachykinin 1) label sleep-promoting neurons. Together, these findings provide easy genetic access to sleep-promoting preoptic area neurons and a valuable entry point for dissecting the sleep control circuit.


Assuntos
Técnicas de Rastreamento Neuroanatômico , Neurônios/fisiologia , Área Pré-Óptica/citologia , Área Pré-Óptica/fisiologia , Sono/fisiologia , Transcriptoma , Animais , Biomarcadores/análise , Channelrhodopsins , Canais de Cloreto/metabolismo , Canais de Cloreto/efeitos da radiação , Colecistocinina/análise , Colecistocinina/genética , Hormônio Liberador da Corticotropina/análise , Hormônio Liberador da Corticotropina/genética , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/efeitos da radiação , Região Hipotalâmica Lateral/fisiologia , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/efeitos da radiação , Optogenética , Área Pré-Óptica/efeitos dos fármacos , Área Pré-Óptica/efeitos da radiação , Proteínas Proto-Oncogênicas c-fos/análise , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ribossomos/metabolismo , Análise de Sequência de RNA , Análise de Célula Única , Sono/efeitos dos fármacos , Sono/efeitos da radiação , Taquicininas/análise , Taquicininas/genética , Vigília/fisiologia , Vigília/efeitos da radiação
11.
Nat Rev Neurosci ; 18(8): 459-469, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28638120

RESUMO

Thirst motivates animals to find and consume water. More than 40 years ago, a set of interconnected brain structures known as the lamina terminalis was shown to govern thirst. However, owing to the anatomical complexity of these brain regions, the structure and dynamics of their underlying neural circuitry have remained obscure. Recently, the emergence of new tools for neural recording and manipulation has reinvigorated the study of this circuit and prompted re-examination of longstanding questions about the neural origins of thirst. Here, we review these advances, discuss what they teach us about the control of drinking behaviour and outline the key questions that remain unanswered.


Assuntos
Encéfalo/citologia , Encéfalo/fisiologia , Comportamento de Ingestão de Líquido/fisiologia , Homeostase/fisiologia , Vias Neurais/fisiologia , Sede/fisiologia , Animais , Humanos , Hipotálamo/fisiologia
12.
Nature ; 537(7622): 680-684, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27487211

RESUMO

Thirst motivates animals to drink in order to maintain fluid balance. Thirst has conventionally been viewed as a homeostatic response to changes in blood volume or tonicity. However, most drinking behaviour is regulated too rapidly to be controlled by blood composition directly, and instead seems to anticipate homeostatic imbalances before they arise. How this is achieved remains unknown. Here we reveal an unexpected role for the subfornical organ (SFO) in the anticipatory regulation of thirst in mice. By monitoring deep-brain calcium dynamics, we show that thirst-promoting SFO neurons respond to inputs from the oral cavity during eating and drinking and then integrate these inputs with information about the composition of the blood. This integration allows SFO neurons to predict how ongoing food and water consumption will alter fluid balance in the future and then to adjust behaviour pre-emptively. Complementary optogenetic manipulations show that this anticipatory modulation is necessary for drinking in several contexts. These findings provide a neural mechanism to explain longstanding behavioural observations, including the prevalence of drinking during meals, the rapid satiation of thirst, and the fact that oral cooling is thirst-quenching.


Assuntos
Ingestão de Líquidos/fisiologia , Ingestão de Alimentos/fisiologia , Homeostase , Neurônios/fisiologia , Órgão Subfornical/citologia , Sede/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia , Animais , Sangue , Cálcio/metabolismo , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Boca/inervação , Boca/fisiologia , Vias Neurais , Optogenética , Órgão Subfornical/fisiologia , Fatores de Tempo
13.
Bioessays ; 38(4): 316-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26898524

RESUMO

AgRP and POMC neurons are two key cell types that regulate feeding in response to hormones and nutrients. Recently, it was discovered that these neurons are also rapidly modulated by the mere sight and smell of food. This rapid sensory regulation "resets" the activity of AgRP and POMC neurons before a single bite of food has been consumed. This surprising and counterintuitive discovery challenges longstanding assumptions about the function and regulation of these cells. Here we review these recent findings and discuss their implications for our understanding of feeding behavior. We propose several alternative hypotheses for how these new observations might be integrated into a revised model of the feeding circuit, and also highlight some of the key questions that remain to be answered.


Assuntos
Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Retroalimentação Fisiológica , Fome/fisiologia , Neurônios/fisiologia , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Antecipação Psicológica , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/fisiologia , Peso Corporal/fisiologia , Regulação da Expressão Gênica , Grelina/genética , Grelina/metabolismo , Homeostase/fisiologia , Humanos , Hipotálamo/citologia , Hipotálamo/fisiologia , Leptina/genética , Leptina/metabolismo , Neurônios/citologia , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , Saciação/fisiologia
14.
Cancer Cell ; 9(5): 341-9, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16697955

RESUMO

The PI3 kinase family of lipid kinases promotes cell growth and survival by generating the second messenger phosphatidylinositol-3,4,5-trisphosphate. To define targets critical for cancers driven by activation of PI3 kinase, we screened a panel of potent and structurally diverse drug-like molecules that target this enzyme family. Surprisingly, a single agent (PI-103) effected proliferative arrest in glioma cells, despite the ability of many compounds to block PI3 kinase signaling through its downstream effector, Akt. The unique cellular activity of PI-103 was traced directly to its ability to inhibit both PI3 kinase alpha and mTOR. PI-103 showed significant activity in xenografted tumors with no observable toxicity. These data demonstrate an emergent efficacy due to combinatorial inhibition of mTOR and PI3 kinase alpha in malignant glioma.


Assuntos
Glioma/tratamento farmacológico , Glioma/enzimologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Ativação Enzimática , Receptores ErbB/metabolismo , Glioma/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organoplatínicos/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Isoformas de Proteínas/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais , Especificidade por Substrato , Serina-Treonina Quinases TOR , Resultado do Tratamento , Proteína Supressora de Tumor p53/metabolismo
15.
Curr Biol ; 33(18): R945-R947, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37751704

RESUMO

The gut is innervated by sensory neurons that relay mechanical and chemical signals to the brain. Two new studies characterize the spinal sensory neurons that innervate the intestines and reveal a role for Piezo2 in these cells in sensing colonic distension and regulating gastrointestinal motility.


Assuntos
Interocepção , Células Receptoras Sensoriais , Encéfalo , Colo
16.
bioRxiv ; 2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38077047

RESUMO

The rewarding taste of food is critical for motivating animals to eat, but whether taste has a parallel function in promoting meal termination is not well understood. Here we show that hunger-promoting AgRP neurons are rapidly inhibited during each bout of ingestion by a signal linked to the taste of food. Blocking these transient dips in activity via closed-loop optogenetic stimulation increases food intake by selectively delaying the onset of satiety. We show that upstream leptin receptor-expressing neurons in the dorsomedial hypothalamus (DMHLepR) are tuned to respond to sweet or fatty tastes and exhibit time-locked activation during feeding that is the mirror image of downstream AgRP cells. These findings reveal an unexpected role for taste in the negative feedback control of ingestion. They also reveal a mechanism by which AgRP neurons, which are the primary cells that drive hunger, are able to influence the moment-by-moment dynamics of food consumption.

17.
PLoS Biol ; 7(2): e38, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19209957

RESUMO

The mammalian target of rapamycin (mTOR) regulates cell growth and survival by integrating nutrient and hormonal signals. These signaling functions are distributed between at least two distinct mTOR protein complexes: mTORC1 and mTORC2. mTORC1 is sensitive to the selective inhibitor rapamycin and activated by growth factor stimulation via the canonical phosphoinositide 3-kinase (PI3K)-->Akt-->mTOR pathway. Activated mTORC1 kinase up-regulates protein synthesis by phosphorylating key regulators of mRNA translation. By contrast, mTORC2 is resistant to rapamycin. Genetic studies have suggested that mTORC2 may phosphorylate Akt at S473, one of two phosphorylation sites required for Akt activation; this has been controversial, in part because RNA interference and gene knockouts produce distinct Akt phospho-isoforms. The central role of mTOR in controlling key cellular growth and survival pathways has sparked interest in discovering mTOR inhibitors that bind to the ATP site and therefore target both mTORC2 and mTORC1. We investigated mTOR signaling in cells and animals with two novel and specific mTOR kinase domain inhibitors (TORKinibs). Unlike rapamycin, these TORKinibs (PP242 and PP30) inhibit mTORC2, and we use them to show that pharmacological inhibition of mTOR blocks the phosphorylation of Akt at S473 and prevents its full activation. Furthermore, we show that TORKinibs inhibit proliferation of primary cells more completely than rapamycin. Surprisingly, we find that mTORC2 is not the basis for this enhanced activity, and we show that the TORKinib PP242 is a more effective mTORC1 inhibitor than rapamycin. Importantly, at the molecular level, PP242 inhibits cap-dependent translation under conditions in which rapamycin has no effect. Our findings identify new functional features of mTORC1 that are resistant to rapamycin but are effectively targeted by TORKinibs. These potent new pharmacological agents complement rapamycin in the study of mTOR and its role in normal physiology and human disease.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Sirolimo/farmacologia , Células 3T3 , Actinas , Animais , Domínio Catalítico/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fibroblastos , Regulação da Expressão Gênica , Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Fosforilação/efeitos dos fármacos , Proteínas Quinases/genética , Proteínas , Pirimidinas/metabolismo , Serina-Treonina Quinases TOR , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
18.
Biochem J ; 433(2): e1-2, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21175429

RESUMO

More than 20 protein kinases are directly activated by 3-phosphoinositide-dependent kinase 1 (PDK1), which is a central component of the pathways that regulate cell growth, proliferation and survival. Despite the importance of PDK1 in cell signalling, highly selective PDK1 inhibitors have not been described. In this issue of the Biochemical Journal, Dario Alessi's group and their collaborators at GlaxoSmithKline report GSK2334470, a potent and selective PDK1 inhibitor. They show that this compound blocks the phosphorylation of known PDK1 substrates, but surprisingly find that the potency and kinetics of inhibition vary for different PDK1 targets. This substrate-specific inhibition has implications for the development of PDK1 inhibitors as drugs.


Assuntos
Indazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Humanos , Fosforilação/efeitos dos fármacos , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato
19.
Elife ; 112022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913117

RESUMO

Animals must learn through experience which foods are nutritious and should be consumed, and which are toxic and should be avoided. Enteroendocrine cells (EECs) are the principal chemosensors in the GI tract, but investigation of their role in behavior has been limited by the difficulty of selectively targeting these cells in vivo. Here, we describe an intersectional genetic approach for manipulating EEC subtypes in behaving mice. We show that multiple EEC subtypes inhibit food intake but have different effects on learning. Conditioned flavor preference is driven by release of cholecystokinin whereas conditioned taste aversion is mediated by serotonin and substance P. These positive and negative valence signals are transmitted by vagal and spinal afferents, respectively. These findings establish a cellular basis for how chemosensing in the gut drives learning about food.


Assuntos
Células Enteroendócrinas , Alimentos , Animais , Colecistocinina/metabolismo , Células Enteroendócrinas/metabolismo , Preferências Alimentares , Camundongos , Recompensa , Paladar
20.
J Clin Invest ; 118(9): 3038-50, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18704194

RESUMO

Some cases of pre-B cell acute lymphoblastic leukemia (pre-B-ALL) are caused by the Philadelphia (Ph) chromosome-encoded BCR-ABL oncogene, and these tend to have a poor prognosis. Inhibitors of the PI3K/AKT pathway reduce BCR-ABL-mediated transformation in vitro; however, the specific PI3K isoforms involved are poorly defined. Using a murine model of Ph+ pre-B-ALL, we found that deletion of both Pik3r1 and Pik3r2, genes encoding class IA PI3K regulatory isoforms, severely impaired transformation. BCR-ABL-dependent pre/pro-B cell lines could be established at low frequency from progenitors that lacked these genes, but the cells were smaller, proliferated more slowly, and failed to cause leukemia in vivo. These cell lines displayed nearly undetectable PI3K signaling function and were resistant to the PI3K inhibitor wortmannin. However, they maintained activation of mammalian target of rapamycin (mTOR) and were more sensitive to rapamycin. Treatment with rapamycin caused feedback activation of AKT in WT cell lines but not PI3K-deficient lines. A dual inhibitor of PI3K and mTOR, PI-103, was more effective than rapamycin at suppressing proliferation of mouse pre-B-ALL and human CD19+CD34+)Ph+ ALL leukemia cells treated with the ABL kinase inhibitor imatinib. Our findings provide mechanistic insights into PI3K dependency in oncogenic networks and provide a rationale for targeting class IA PI3K, alone or together with mTOR, in the treatment of Ph+ ALL.


Assuntos
Linfoma de Burkitt/genética , Proteínas de Fusão bcr-abl/metabolismo , Regulação Leucêmica da Expressão Gênica , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases/metabolismo , Animais , Antígenos CD19/biossíntese , Antígenos CD34/biossíntese , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica , Humanos , Camundongos , Modelos Biológicos , Inibidores de Fosfoinositídeo-3 Quinase , Serina-Treonina Quinases TOR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA