Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
2.
Nat Immunol ; 21(5): 555-566, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32327756

RESUMO

Regulatory myeloid immune cells, such as myeloid-derived suppressor cells (MDSCs), populate inflamed or cancerous tissue and block immune cell effector functions. The lack of mechanistic insight into MDSC suppressive activity and a marker for their identification has hampered attempts to overcome T cell inhibition and unleash anti-cancer immunity. Here, we report that human MDSCs were characterized by strongly reduced metabolism and conferred this compromised metabolic state to CD8+ T cells, thereby paralyzing their effector functions. We identified accumulation of the dicarbonyl radical methylglyoxal, generated by semicarbazide-sensitive amine oxidase, to cause the metabolic phenotype of MDSCs and MDSC-mediated paralysis of CD8+ T cells. In a murine cancer model, neutralization of dicarbonyl activity overcame MDSC-mediated T cell suppression and, together with checkpoint inhibition, improved the efficacy of cancer immune therapy. Our results identify the dicarbonyl methylglyoxal as a marker metabolite for MDSCs that mediates T cell paralysis and can serve as a target to improve cancer immune therapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Melanoma/imunologia , Células Supressoras Mieloides/imunologia , Aldeído Pirúvico/metabolismo , Amina Oxidase (contendo Cobre)/metabolismo , Animais , Linfócitos T CD8-Positivos/transplante , Comunicação Celular , Proliferação de Células , Humanos , Tolerância Imunológica , Ativação Linfocitária , Melanoma Experimental , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/metabolismo
3.
Nature ; 629(8011): 417-425, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658748

RESUMO

Cancer-specific TCF1+ stem-like CD8+ T cells can drive protective anticancer immunity through expansion and effector cell differentiation1-4; however, this response is dysfunctional in tumours. Current cancer immunotherapies2,5-9 can promote anticancer responses through TCF1+ stem-like CD8+ T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1+CD8+ T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE2) restricts the proliferative expansion and effector differentiation of TCF1+CD8+ T cells within tumours, which promotes cancer immune escape. PGE2 does not affect the priming of TCF1+CD8+ T cells in draining lymph nodes. PGE2 acts through EP2 and EP4 (EP2/EP4) receptor signalling in CD8+ T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1+ tumour-infiltrating CD8+ T lymphocytes (TILs). Ablation of EP2/EP4 signalling in cancer-specific CD8+ T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE2-mediated inhibition of TCF1+ TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1+ TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE2-EP2/EP4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.


Assuntos
Linfócitos T CD8-Positivos , Proliferação de Células , Dinoprostona , Linfócitos do Interstício Tumoral , Neoplasias , Células-Tronco , Evasão Tumoral , Animais , Feminino , Humanos , Masculino , Camundongos , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Dinoprostona/metabolismo , Modelos Animais de Doenças , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Interleucina-2 , Linfonodos/citologia , Linfonodos/imunologia , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/prevenção & controle , Receptores de Prostaglandina E Subtipo EP2/deficiência , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Prostaglandina E Subtipo EP4/deficiência , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Células-Tronco/imunologia , Células-Tronco/metabolismo , Evasão Tumoral/imunologia
4.
Cell ; 156(3): 456-68, 2014 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-24485454

RESUMO

The phagocytes of the innate immune system, macrophages and neutrophils, contribute to antibacterial defense, but their functional specialization and cooperation is unclear. Here, we report that three distinct phagocyte subsets play highly coordinated roles in bacterial urinary tract infection. Ly6C(-) macrophages acted as tissue-resident sentinels that attracted circulating neutrophils and Ly6C(+) macrophages. Such Ly6C(+) macrophages played a previously undescribed helper role: once recruited to the site of infection, they produced the cytokine TNF, which caused Ly6C(-) macrophages to secrete CXCL2. This chemokine activated matrix metalloproteinase-9 in neutrophils, allowing their entry into the uroepithelium to combat the bacteria. In summary, the sentinel macrophages elicit the powerful antibacterial functions of neutrophils only after confirmation by the helper macrophages, reminiscent of the licensing role of helper T cells in antiviral adaptive immunity. These findings identify helper macrophages and TNF as critical regulators in innate immunity against bacterial infections in epithelia.


Assuntos
Infecções Bacterianas/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Infecções Urinárias/imunologia , Animais , Antígenos Ly/metabolismo , Quimiocina CXCL2/imunologia , Feminino , Doenças do Sistema Imunitário , Cinética , Transtornos Leucocíticos , Macrófagos/citologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Neutrófilos/citologia , Organismos Livres de Patógenos Específicos , Fator de Necrose Tumoral alfa/imunologia
5.
Nat Immunol ; 17(5): 593-603, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26950238

RESUMO

Persistent viral infections are characterized by the simultaneous presence of chronic inflammation and T cell dysfunction. In prototypic models of chronicity--infection with human immunodeficiency virus (HIV) or lymphocytic choriomeningitis virus (LCMV)--we used transcriptome-based modeling to reveal that CD4(+) T cells were co-exposed not only to multiple inhibitory signals but also to tumor-necrosis factor (TNF). Blockade of TNF during chronic infection with LCMV abrogated the inhibitory gene-expression signature in CD4(+) T cells, including reduced expression of the inhibitory receptor PD-1, and reconstituted virus-specific immunity, which led to control of infection. Preventing signaling via the TNF receptor selectively in T cells sufficed to induce these effects. Targeted immunological interventions to disrupt the TNF-mediated link between chronic inflammation and T cell dysfunction might therefore lead to therapies to overcome persistent viral infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adolescente , Adulto , Idoso , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Citometria de Fluxo , Células HEK293 , HIV/fisiologia , Infecções por HIV/genética , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Immunoblotting , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Transcriptoma/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adulto Jovem
6.
Nature ; 592(7854): 444-449, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33762736

RESUMO

Nonalcoholic steatohepatitis (NASH) is a manifestation of systemic metabolic disease related to obesity, and causes liver disease and cancer1,2. The accumulation of metabolites leads to cell stress and inflammation in the liver3, but mechanistic understandings of liver damage in NASH are incomplete. Here, using a preclinical mouse model that displays key features of human NASH (hereafter, NASH mice), we found an indispensable role for T cells in liver immunopathology. We detected the hepatic accumulation of CD8 T cells with phenotypes that combined tissue residency (CXCR6) with effector (granzyme) and exhaustion (PD1) characteristics. Liver CXCR6+ CD8 T cells were characterized by low activity of the FOXO1 transcription factor, and were abundant in NASH mice and in patients with NASH. Mechanistically, IL-15 induced FOXO1 downregulation and CXCR6 upregulation, which together rendered liver-resident CXCR6+ CD8 T cells susceptible to metabolic stimuli (including acetate and extracellular ATP) and collectively triggered auto-aggression. CXCR6+ CD8 T cells from the livers of NASH mice or of patients with NASH had similar transcriptional signatures, and showed auto-aggressive killing of cells in an MHC-class-I-independent fashion after signalling through P2X7 purinergic receptors. This killing by auto-aggressive CD8 T cells fundamentally differed from that by antigen-specific cells, which mechanistically distinguishes auto-aggressive and protective T cell immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fígado/imunologia , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/patologia , Receptores CXCR6/imunologia , Acetatos/farmacologia , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/patologia , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Humanos , Interleucina-15/imunologia , Interleucina-15/farmacologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Nat Immunol ; 14(6): 574-83, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23584070

RESUMO

Chronic infection is difficult to overcome because of exhaustion or depletion of cytotoxic effector CD8(+) T cells (cytotoxic T lymphoytes (CTLs)). Here we report that signaling via Toll-like receptors (TLRs) induced intrahepatic aggregates of myeloid cells that enabled the population expansion of CTLs (iMATEs: 'intrahepatic myeloid-cell aggregates for T cell population expansion') without causing immunopathology. In the liver, CTL proliferation was restricted to iMATEs that were composed of inflammatory monocyte-derived CD11b(+) cells. Signaling via tumor-necrosis factor (TNF) caused iMATE formation that facilitated costimulation dependent on the receptor OX40 for expansion of the CTL population. The iMATEs arose during acute viral infection but were absent during chronic viral infection, yet they were still induced by TLR signaling. Such hepatic expansion of the CTL population controlled chronic viral infection of the liver after vaccination with DNA. Thus, iMATEs are dynamic structures that overcome regulatory cues that limit the population expansion of CTLs during chronic infection and can be used in new therapeutic vaccination strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Hepatopatias/imunologia , Coriomeningite Linfocítica/imunologia , Células Mieloides/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Animais Recém-Nascidos , Antígeno CD11b/imunologia , Antígeno CD11b/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Doença Crônica , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunoterapia , Fígado/imunologia , Fígado/metabolismo , Fígado/virologia , Hepatopatias/terapia , Hepatopatias/virologia , Coriomeningite Linfocítica/terapia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Células Mieloides/metabolismo , Receptores OX40/imunologia , Receptores OX40/metabolismo , Transdução de Sinais/imunologia , Linfócitos T Citotóxicos/metabolismo , Receptor Toll-Like 9/imunologia , Receptor Toll-Like 9/metabolismo
8.
Nature ; 571(7764): 265-269, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31207605

RESUMO

Cytotoxic T cells are essential mediators of protective immunity to viral infection and malignant tumours and are a key target of immunotherapy approaches. However, prolonged exposure to cognate antigens often attenuates the effector capacity of T cells and limits their therapeutic potential1-4. This process, known as T cell exhaustion or dysfunction1, is manifested by epigenetically enforced changes in gene regulation that reduce the expression of cytokines and effector molecules and upregulate the expression of inhibitory receptors such as programmed cell-death 1 (PD-1)5-8. The underlying molecular mechanisms that induce and stabilize the phenotypic and functional features of exhausted T cells remain poorly understood9-12. Here we report that the development and maintenance of populations of exhausted T cells in mice requires the thymocyte selection-associated high mobility group box (TOX) protein13-15. TOX is induced by high antigen stimulation of the T cell receptor and correlates with the presence of an exhausted phenotype during chronic infections with lymphocytic choriomeningitis virus in mice and hepatitis C virus in humans. Removal of its DNA-binding domain reduces the expression of PD-1 at the mRNA and protein level, augments the production of cytokines and results in a more polyfunctional T cell phenotype. T cells with this deletion initially mediate increased effector function and cause more severe immunopathology, but ultimately undergo a massive decline in their quantity, notably among the subset of TCF-1+ self-renewing T cells. Altogether, we show that TOX is a critical factor for the normal progression of T cell dysfunction and the maintenance of exhausted T cells during chronic infection, and provide a link between the suppression of effector function intrinsic to CD8 T cells and protection against immunopathology.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/metabolismo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Animais , Proliferação de Células , Doença Crônica , Citocinas/imunologia , Citocinas/metabolismo , Epigênese Genética , Feminino , Regulação da Expressão Gênica/imunologia , Hepacivirus/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Memória Imunológica , Vírus da Coriomeningite Linfocítica/imunologia , Masculino , Camundongos , Fenótipo , Timócitos/citologia , Timócitos/imunologia , Transcrição Gênica
9.
J Hepatol ; 78(4): 717-730, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36634821

RESUMO

BACKGROUND & AIMS: We recently developed a heterologous therapeutic vaccination scheme (TherVacB) comprising a particulate protein prime followed by a modified vaccinia-virus Ankara (MVA)-vector boost for the treatment of HBV. However, the key determinants required to overcome HBV-specific immune tolerance remain unclear. Herein, we aimed to study new combination adjuvants and unravel factors that are essential for the antiviral efficacy of TherVacB. METHODS: Recombinant hepatitis B surface and core antigen (HBsAg and HBcAg) particles were formulated with different liposome- or oil-in-water emulsion-based combination adjuvants containing saponin QS21 and monophosphoryl lipid A; these formulations were compared to STING-agonist c-di-AMP and conventional aluminium hydroxide formulations. Immunogenicity and the antiviral effects of protein antigen formulations and the MVA-vector boost within TherVacB were evaluated in adeno-associated virus-HBV-infected and HBV-transgenic mice. RESULTS: Combination adjuvant formulations preserved HBsAg and HBcAg integrity for ≥12 weeks, promoted human and mouse dendritic cell activation and, within TherVacB, elicited robust HBV-specific antibody and T-cell responses in wild-type and HBV-carrier mice. Combination adjuvants that prime a balanced HBV-specific type 1 and 2 T helper response induced high-titer anti-HBs antibodies, cytotoxic T-cell responses and long-term control of HBV. In the absence of an MVA-vector boost or following selective CD8 T-cell depletion, HBsAg still declined (mediated mainly by anti-HBs antibodies) but HBV replication was not controlled. Selective CD4 T-cell depletion during the priming phase of TherVacB resulted in a complete loss of vaccine-induced immune responses and its therapeutic antiviral effect in mice. CONCLUSIONS: Our results identify CD4 T-cell activation during the priming phase of TherVacB as a key determinant of HBV-specific antibody and CD8 T-cell responses. IMPACT AND IMPLICATIONS: Therapeutic vaccination is a potentially curative treatment option for chronic hepatitis B. However, it remains unclear which factors are essential for breaking immune tolerance in HBV carriers and determining successful outcomes. Our study provides the first direct evidence that efficient priming of HBV-specific CD4 T cells determines the success of therapeutic hepatitis B vaccination in two preclinical HBV-carrier mouse models. Applying an optimal formulation of HBV antigens that activates CD4 and CD8 T cells during prime immunization provided the foundation for an antiviral effect of therapeutic vaccination, while depletion of CD4 T cells led to a complete loss of vaccine-induced antiviral efficacy. Boosting CD8 T cells was important to finally control HBV in these mouse models. Our findings provide important insights into the rational design of therapeutic vaccines for the cure of chronic hepatitis B.


Assuntos
Vacinas contra Hepatite B , Hepatite B Crônica , Camundongos , Humanos , Animais , Vírus da Hepatite B , Antígenos de Superfície da Hepatite B , Antígenos do Núcleo do Vírus da Hepatite B , Linfócitos T CD4-Positivos , Imunização , Vacinação/métodos , Anticorpos Anti-Hepatite B , Linfócitos T CD8-Positivos , Camundongos Transgênicos , Adjuvantes Imunológicos , Antivirais
10.
J Hepatol ; 79(1): 150-166, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36870611

RESUMO

BACKGROUND & AIMS: Patients with chronic liver disease (CLD), including cirrhosis, are at increased risk of intractable viral infections and are hyporesponsive to vaccination. Hallmarks of CLD and cirrhosis include microbial translocation and elevated levels of type I interferon (IFN-I). We aimed to investigate the relevance of microbiota-induced IFN-I in the impaired adaptive immune responses observed in CLD. METHODS: We combined bile duct ligation (BDL) and carbon tetrachloride (CCl4) models of liver injury with vaccination or lymphocytic choriomeningitis virus infection in transgenic mice lacking IFN-I in myeloid cells (LysM-Cre IFNARflox/flox), IFNAR-induced IL-10 (MX1-Cre IL10flox/flox) or IL-10R in T cells (CD4-DN IL-10R). Key pathways were blocked in vivo with specific antibodies (anti-IFNAR and anti-IL10R). We assessed T-cell responses and antibody titers after HBV and SARS-CoV-2 vaccinations in patients with CLD and healthy individuals in a proof-of-concept clinical study. RESULTS: We demonstrate that BDL- and CCL4-induced prolonged liver injury leads to impaired T-cell responses to vaccination and viral infection in mice, subsequently leading to persistent infection. We observed a similarly defective T-cell response to vaccination in patients with cirrhosis. Innate sensing of translocated gut microbiota induced IFN-I signaling in hepatic myeloid cells that triggered excessive IL-10 production upon viral infection. IL-10R signaling in antigen-specific T cells rendered them dysfunctional. Antibiotic treatment and inhibition of IFNAR or IL-10Ra restored antiviral immunity without detectable immune pathology in mice. Notably, IL-10Ra blockade restored the functional phenotype of T cells from vaccinated patients with cirrhosis. CONCLUSION: Innate sensing of translocated microbiota induces IFN-/IL-10 expression, which drives the loss of systemic T-cell immunity during prolonged liver injury. IMPACT AND IMPLICATIONS: Chronic liver injury and cirrhosis are associated with enhanced susceptibility to viral infections and vaccine hyporesponsiveness. Using different preclinical animal models and patient samples, we identified that impaired T-cell immunity in BDL- and CCL4-induced prolonged liver injury is driven by sequential events involving microbial translocation, IFN signaling leading to myeloid cell-induced IL-10 expression, and IL-10 signaling in antigen-specific T cells. Given the absence of immune pathology after interference with IL-10R, our study highlights a potential novel target to reconstitute T-cell immunity in patients with CLD that can be explored in future clinical studies.


Assuntos
COVID-19 , Interferon Tipo I , Camundongos , Animais , Interleucina-10 , SARS-CoV-2 , Camundongos Transgênicos , Cirrose Hepática , Camundongos Endogâmicos C57BL
11.
Nat Immunol ; 12(9): 898-907, 2011 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-21841785

RESUMO

Regulatory T cells (T(reg) cells) are essential for self-tolerance and immune homeostasis. Lack of effector T cell (T(eff) cell) function and gain of suppressive activity by T(reg) cells are dependent on the transcriptional program induced by Foxp3. Here we report that repression of SATB1, a genome organizer that regulates chromatin structure and gene expression, was crucial for the phenotype and function of T(reg) cells. Foxp3, acting as a transcriptional repressor, directly suppressed the SATB1 locus and indirectly suppressed it through the induction of microRNAs that bound the SATB1 3' untranslated region. Release of SATB1 from the control of Foxp3 in T(reg) cells caused loss of suppressive function, establishment of transcriptional T(eff) cell programs and induction of T(eff) cell cytokines. Our data support the proposal that inhibition of SATB1-mediated modulation of global chromatin remodeling is pivotal for maintaining T(reg) cell functionality.


Assuntos
Montagem e Desmontagem da Cromatina/imunologia , Fatores de Transcrição Forkhead/imunologia , Regulação da Expressão Gênica , Proteínas de Ligação à Região de Interação com a Matriz/imunologia , Tolerância a Antígenos Próprios , Linfócitos T Reguladores/imunologia , Regiões 3' não Traduzidas/genética , Regiões 3' não Traduzidas/imunologia , Animais , Diferenciação Celular/efeitos dos fármacos , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Citometria de Fluxo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Lentivirus , Ativação Linfocitária/efeitos dos fármacos , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/imunologia , MicroRNAs/metabolismo , MicroRNAs/farmacologia , Interferência de RNA , RNA Interferente Pequeno/imunologia , RNA Interferente Pequeno/metabolismo , RNA Interferente Pequeno/farmacologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tolerância a Antígenos Próprios/efeitos dos fármacos , Tolerância a Antígenos Próprios/genética , Tolerância a Antígenos Próprios/imunologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/metabolismo , Transdução Genética
12.
Nat Immunol ; 11(4): 313-20, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20190758

RESUMO

Cross-priming allows dendritic cells (DCs) to induce cytotoxic T cell (CTL) responses to extracellular antigens. DCs require cognate 'licensing' for cross-priming, classically by helper T cells. Here we demonstrate an alternative mechanism for cognate licensing by natural killer T (NKT) cells recognizing microbial or synthetic glycolipid antigens. Such licensing caused cross-priming CD8alpha(+) DCs to produce the chemokine CCL17, which attracted naive CTLs expressing the chemokine receptor CCR4. In contrast, DCs licensed by helper T cells recruited CTLs using CCR5 ligands. Thus, depending on the type of antigen they encounter, DCs can be licensed for cross-priming by NKT cells or helper T cells and use at least two independent chemokine pathways to attract naive CTLs. Because these chemokines acted synergistically, this can potentially be exploited to improve vaccinations.


Assuntos
Quimiocina CCL17/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células T Matadoras Naturais/imunologia , Receptores CCR4/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Apresentação de Antígeno/imunologia , Movimento Celular/imunologia , Separação Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Subpopulações de Linfócitos T/imunologia , Linfócitos T Auxiliares-Indutores/imunologia
14.
J Hepatol ; 73(6): 1347-1359, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32598967

RESUMO

BACKGROUND & AIMS: Selective elimination of virus-infected hepatocytes occurs through virus-specific CD8 T cells recognizing peptide-loaded MHC molecules. Herein, we report that virus-infected hepatocytes are also selectively eliminated through a cell-autonomous mechanism. METHODS: We generated recombinant adenoviruses and genetically modified mouse models to identify the molecular mechanisms determining TNF-induced hepatocyte apoptosis in vivo and used in vivo bioluminescence imaging, immunohistochemistry, immunoblot analysis, RNAseq/proteome/phosphoproteome analyses, bioinformatic analyses, mitochondrial function tests. RESULTS: We found that TNF precisely eliminated only virus-infected hepatocytes independently of local inflammation and activation of immune sensory receptors. TNF receptor I was equally relevant for NF-kB activation in healthy and infected hepatocytes, but selectively mediated apoptosis in infected hepatocytes. Caspase 8 activation downstream of TNF receptor signaling was dispensable for apoptosis in virus-infected hepatocytes, indicating an unknown non-canonical cell-intrinsic pathway promoting apoptosis in hepatocytes. We identified a unique state of mitochondrial vulnerability in virus-infected hepatocytes as the cause for this non-canonical induction of apoptosis through TNF. Mitochondria from virus-infected hepatocytes showed normal biophysical and bioenergetic functions but were characterized by reduced resilience to calcium challenge. In the presence of unchanged TNF-induced signaling, reactive oxygen species-mediated calcium release from the endoplasmic reticulum caused mitochondrial permeability transition and apoptosis, which identified a link between extrinsic death receptor signaling and cell-intrinsic mitochondrial-mediated caspase activation. CONCLUSION: Our findings reveal a novel concept in immune surveillance by identifying a cell-autonomous defense mechanism that selectively eliminates virus-infected hepatocytes through mitochondrial permeability transition. LAY SUMMARY: The liver is known for its unique immune functions. Herein, we identify a novel mechanism by which virus-infected hepatocytes can selectively eliminate themselves through reduced mitochondrial resilience to calcium challenge.


Assuntos
Caspase 8/metabolismo , Hepatócitos , Mitocôndrias Hepáticas , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Animais , Apoptose/imunologia , Sinalização do Cálcio , Células Cultivadas , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Camundongos , Mitocôndrias Hepáticas/imunologia , Mitocôndrias Hepáticas/metabolismo , Necrose Dirigida por Permeabilidade Transmembrânica da Mitocôndria , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
15.
J Hepatol ; 72(5): 960-975, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31954207

RESUMO

BACKGROUND & AIMS: Hepatic innate immune control of viral infections has largely been attributed to Kupffer cells, the liver-resident macrophages. However, hepatocytes, the parenchymal cells of the liver, also possess potent immunological functions in addition to their known metabolic functions. Owing to their abundance in the liver and known immunological functions, we aimed to investigate the direct antiviral mechanisms employed by hepatocytes. METHODS: Using lymphocytic choriomeningitis virus (LCMV) as a model of liver infection, we first assessed the role of myeloid cells by depletion prior to infection. We investigated the role of hepatocyte-intrinsic innate immune signaling by infecting mice lacking canonical NF-κB signaling (IkkßΔHep) specifically in hepatocytes. In addition, mice lacking hepatocyte-specific interferon-α/ß signaling-(IfnarΔHep), or interferon-α/ß signaling in myeloid cells-(IfnarΔMyel) were infected. RESULTS: Here, we demonstrate that LCMV activates NF-κB signaling in hepatocytes. LCMV-triggered NF-κB activation in hepatocytes did not depend on Kupffer cells or TNFR1 signaling but rather on Toll-like receptor signaling. LCMV-infected IkkßΔHep livers displayed strongly elevated viral titers due to LCMV accumulation within hepatocytes, reduced interferon-stimulated gene (ISG) expression, delayed intrahepatic immune cell influx and delayed intrahepatic LCMV-specific CD8+ T cell responses. Notably, viral clearance and ISG expression were also reduced in LCMV-infected primary hepatocytes lacking IKKß, demonstrating a hepatocyte-intrinsic effect. Similar to livers of IkkßΔHep mice, enhanced hepatocytic LCMV accumulation was observed in livers of IfnarΔHep mice, whereas IfnarΔMyel mice were able to control LCMV infection. Hepatocytic NF-κB signaling was also required for efficient ISG induction in HDV-infected dHepaRG cells and interferon-α/ß-mediated inhibition of HBV replication in vitro. CONCLUSIONS: Together, these data show that hepatocyte-intrinsic NF-κB is a vital amplifier of interferon-α/ß signaling, which is pivotal for strong early ISG responses, immune cell infiltration and hepatic viral clearance. LAY SUMMARY: Innate immune cells have been ascribed a primary role in controlling viral clearance upon hepatic infections. We identified a novel dual role for NF-κB signaling in infected hepatocytes which was crucial for maximizing interferon responses and initiating adaptive immunity, thereby efficiently controlling hepatic virus replication.


Assuntos
Hepacivirus/genética , Hepatite C Crônica/genética , Hepatite C Crônica/imunologia , Hepatócitos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Subunidade p50 de NF-kappa B/genética , Polimorfismo de Nucleotídeo Único , Fator de Transcrição RelA/metabolismo , Replicação Viral/genética , Adulto , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Técnicas de Inativação de Genes , Genótipo , Hepatite C Crônica/virologia , Humanos , Quinase I-kappa B/deficiência , Quinase I-kappa B/genética , Coriomeningite Linfocítica/virologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais , Adulto Jovem
16.
EMBO J ; 35(16): 1730-44, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412700

RESUMO

Recent studies have shown that tissue macrophages (MΦ) arise from embryonic progenitors of the yolk sac (YS) and fetal liver and colonize tissues before birth. Further studies have proposed that developmentally distinct tissue MΦ can be identified based on the differential expression of F4/80 and CD11b, but whether a characteristic transcriptional profile exists is largely unknown. Here, we took advantage of an inducible fate-mapping system that facilitated the identification of CD45(+)c-kit(-)CX3CR1(+)F4/80(+) (A2) progenitors of the YS as the source of F4/80(hi) but not CD11b(hi) MΦ. Large-scale transcriptional profiling of MΦ precursors from the YS stage to adulthood allowed for building computational models for F4/80(hi) tissue macrophages being direct descendants of A2 progenitors. We further identified a distinct molecular signature of F4/80(hi) and CD11b(hi) MΦ and found that Irf8 was vital for MΦ maturation. Our data provide new cellular and molecular insights into the origin and developmental pathways of tissue MΦ.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Macrófagos/fisiologia , Células-Tronco/fisiologia , Saco Vitelino/citologia , Animais , Simulação por Computador , Feminino , Imunofenotipagem , Masculino , Camundongos
17.
Int J Mol Sci ; 21(7)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260486

RESUMO

The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) regulates target gene expression upon ligand binding. Apart from its effects on metabolism, PPARγ activity can inhibit the production of pro-inflammatory cytokines by several immune cells, including dendritic cells and macrophages. In chronic inflammatory disease models, PPARγ activation delays the onset and ameliorates disease severity. Here, we investigated the effect of PPARγ activation by the agonist Pioglitazone on the function of hepatic immune cells and its effect in a murine model of immune-mediated hepatitis. Cytokine production by both liver sinusoidal endothelial cells (IL-6) and in T cells ex vivo (IFNγ) was decreased in cells from Pioglitazone-treated mice. However, PPARγ activation did not decrease pro-inflammatory tumor necrosis factor alpha TNFα production by Kupffer cells after Toll-like receptor (TLR) stimulation ex vivo. Most interestingly, although PPARγ activation was shown to ameliorate chronic inflammatory diseases, it did not improve hepatic injury in a model of immune-mediated hepatitis. In contrast, Pioglitazone-induced PPARγ activation exacerbated D-galactosamine (GalN)/lipopolysaccharide (LPS) hepatitis associated with an increased production of TNFα by Kupffer cells and increased sensitivity of hepatocytes towards TNFα after in vivo Pioglitazone administration. These results unravel liver-specific effects of Pioglitazone that fail to attenuate liver inflammation but rather exacerbate liver injury in an experimental hepatitis model.


Assuntos
Hepatite Autoimune/imunologia , PPAR gama/agonistas , Pioglitazona/farmacologia , Animais , Células Cultivadas , Interferon gama/metabolismo , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/imunologia , Ativação Linfocitária , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
18.
Hepatology ; 68(6): 2089-2105, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29729204

RESUMO

The liver bears unique immune properties that support both immune tolerance and immunity, but the mechanisms responsible for clearance versus persistence of virus-infected hepatocytes remain unclear. Here, we dissect the factors determining the outcome of antiviral immunity using recombinant adenoviruses that reflect the hepatropism and hepatrophism of hepatitis viruses. We generated replication-deficient adenoviruses with equimolar expression of ovalbumin, luciferase, and green fluorescent protein driven by a strong ubiquitous cytomegalovirus (CMV) promoter (Ad-CMV-GOL) or by 100-fold weaker, yet hepatocyte-specific, transthyretin (TTR) promoter (Ad-TTR-GOL). Using in vivo bioluminescence to quantitatively and dynamically image luciferase activity, we demonstrated that Ad-TTR-GOL infection always persists, whereas Ad-CMV-GOL infection is always cleared, independent of the number of infected hepatocytes. Failure to clear Ad-TTR-GOL infection involved mechanisms acting during initiation as well as execution of antigen-specific immunity. First, hepatocyte-restricted antigen expression led to delayed and curtailed T-cell expansion-10,000-fold after Ad-CMV-GOL versus 150-fold after Ad-TTR-GOL-infection. Second, CD8 T-cells primed toward antigens selectively expressed by hepatocytes showed high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression levels similar to that seen in chronic hepatitis B. Third, Ad-TTR-GOL but not Ad-CMV-GOL-infected hepatocytes escaped being killed by effector T-cells while still inducing high PD-1/Tim-3/LAG-3/CTLA-4/CD160 expression, indicating different thresholds of T-cell receptor signaling relevant for triggering effector functions compared with exhaustion. Conclusion: Our study identifies deficits in the generation of CD8 T-cell immunity toward hepatocyte-expressed antigens and escape of infected hepatocytes expressing low viral antigen levels from effector T-cell killing as independent factors promoting viral persistence. This highlights the importance of addressing both the restauration of CD8 T-cell dysfunction and overcoming local hurdles of effector T-cell function to eliminate virus-infected hepatocytes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Hepatite Viral Animal/imunologia , Hepatócitos/imunologia , Adenoviridae , Animais , Antígenos/metabolismo , Citomegalovirus/genética , Expressão Gênica , Ativação Linfocitária , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pré-Albumina/genética , Regiões Promotoras Genéticas
19.
Semin Immunol ; 27(1): 4-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25841628

RESUMO

The differentiation of memory CD8T cells after acute infections comprises generation of functionally distinct populations that either have proliferative potential or display cytotoxic effector functions and that either recirculate into lymphoid tissues or remain tissue-resident. The development of these functionally distinct cell populations is dictated by defined signals from the microenvironment that result in a coordinated expression of a network of transcription factors, which determine the functionality of memory T cells. Distinct transcriptional regulation observed during chronic viral infection that results in generation of T cells that control viral replication in the absence of immunopathology suggests the existence of so far unappreciated functional adaptation of T cell function to the particular need during chronic infections to control infection and avoid immunopathology. Furthermore, the non-canonical generation of CD8T cell memory outside of lymphoid tissues in the liver in the absence of inflammation is correlated with a distinct transcriptional profile and indicates further complexity in the commensurate immune response to infectious pathogens that escape innate immunity. Taken together, distinct profiles of transcriptional regulation are linked to CD8T cells with different functions and provide important mechanistic insight into the continuous functional adaptation of CD8T cells to generate a commensurate immune response to infectious challenges.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Animais , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular , Humanos , Infecções/imunologia , Fígado/imunologia , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica
20.
Proc Natl Acad Sci U S A ; 113(38): 10649-54, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601670

RESUMO

The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.


Assuntos
Antígeno CTLA-4/genética , Lectinas Tipo C/genética , Antígenos Comuns de Leucócito/genética , Ativação Linfocitária/genética , Lectinas de Ligação a Manose/genética , Receptores de Superfície Celular/genética , Animais , Apresentação de Antígeno/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Antígeno CTLA-4/imunologia , Regulação da Expressão Gênica/genética , Humanos , Tolerância Imunológica/genética , Lectinas Tipo C/imunologia , Antígenos Comuns de Leucócito/imunologia , Ativação Linfocitária/imunologia , Receptor de Manose , Lectinas de Ligação a Manose/imunologia , Camundongos , Proteínas Proto-Oncogênicas c-bcl-6/genética , Receptores de Superfície Celular/imunologia , Linfócitos T Citotóxicos/imunologia , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA