Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 149(9): 2573-2585, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38469706

RESUMO

Gaseous fragment ions generated in mass spectrometers may be employed as "building blocks" for the synthesis of novel molecules on surfaces using ion soft-landing. A fundamental understanding of the reactivity of the fragment ions is required to control bond formation of deposited fragments in surface layers. The fragment ion [B12X11]- (X = halogen) is formed by collision-induced dissociation (CID) from the precursor [B12X12]2- dianion. [B12X11]- is highly reactive and ion soft-landing experiments have shown that this ion binds to the alkyl chains of organic molecules on surfaces. In this work we investigate whether specific modifications of the precursor ion affect the chemical properties of the fragment ions to such an extent that attachment to functional groups of organic molecules on surfaces occurs and binding of alkyl chains is prevented. Therefore, a halogen substituent was replaced by a thiocyanate substituent. CID of the precursor [B12I11(SCN)]2- ion preferentially yields the fragment ion [B12I8S(CN)]-, which shows significantly altered reactivity compared to the fragment ions of [B12I12]2-. [B12I8S(CN)]- has a previously unknown structural element, wherein a sulfur atom bridges three boron atoms. Gas-phase reactions with different neutral reactants (cyclohexane, dimethyl sulfide, and dimethyl amine) accompanied by theoretical studies indicate that [B12I8S(CN)]- binds with higher selectivity to functional groups of organic molecules than fragment ions of [B12I12]2- (e.g., [B12I11]- and [B12I9]-). These findings were further confirmed by ion soft-landing experiments, which showed that [B12I8S(CN)]- ions attacked ester groups of adipates and phthalates, whereas [B12I11]- ions only bound to alkyl chains of the same reagents.

2.
Angew Chem Int Ed Engl ; 63(4): e202314784, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-37917653

RESUMO

Despite being recognized primarily as an analytical technique, mass spectrometry also has a large potential as a synthetic tool, enabling access to advanced synthetic routes by reactions in charged microdroplets or ionic thin layers. Such reactions are special and proceed primarily at surfaces of droplets and thin layers. Partial solvation of the reactants is usually considered to play an important role for reducing the activation barrier, but many mechanistic details still need to be clarified. In our study, we showcase the synergy between two sequentially applied "preparative mass spectrometry" methods: initiating accelerated reactions within microdroplets during electrospray ionization to generate gaseous ionic intermediates in high abundance, which are subsequently mass-selected and soft-landed to react with a provided reagent on a substrate. This allows the generation of products at a nanomolar scale, amenable to further characterization. In this proof-of-concept study, the contrasting reaction pathways between intrinsically neutral and pre-charged reagents, respectively, both in microdroplets and in layers generated by ion soft-landing are investigated. This provides new insights into the role of partially solvated reagents at microdroplet surfaces for increased reaction rates. Additionally, further insights into reactions of ions of the same polarity under various conditions is obtained.

3.
Chemistry ; 29(72): e202302247, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37749942

RESUMO

Superelectrophilic anions constitute a special class of molecular anions that show strong binding of weak nucleophiles despite their negative charge. In this study, the binding characteristics of smaller gaseous electrophilic anions of the types [B6 X5 ]- and [B10 X9 ]- (with X=Cl, Br, I) were computationally and experimentally investigated and compared to those of the larger analogues [B12 X11 ]- . The positive charge of vacant boron increases from [B6 X5 ]- via [B10 X9 ]- to [B12 X11 ]- , as evidenced by increasing attachment enthalpies towards typical σ-donor molecules (noble gases, H2 O). However, this behavior is reversed for σ-donor-π-acceptor molecules. [B6 Cl5 ]- binds most strongly to N2 and CO, even more strongly than to H2 O. Energy decomposition analysis confirms that the orbital interaction is responsible for this opposite trend. The extended transition state natural orbitals for chemical valence method shows that the π-backdonation order is [B6 X5 ]- >[B10 X9 ]- >[B12 X11 ]- . This predicted order explains the experimentally observed red shifts of the CO and N2 stretching fundamentals compared to those of the unbound molecules, as measured by infrared photodissociation spectroscopy. The strongest red shift is observed for [B6 Cl5 N2 ]- : 222 cm-1 . Therefore, strong activation of unreactive σ-donor-π-acceptor molecules (commonly observed for cationic transition metal complexes) is achieved with metal-free molecular anions.

4.
Angew Chem Int Ed Engl ; 62(45): e202308600, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37531598

RESUMO

Mass spectrometry frequently reveals the existence of transient gas phase ions that have not been synthesized in solution or in bulk. These elusive ions are, therefore, often considered to be primarily of analytical value in fundamental gas phase studies. Here, we provide proof-of-concept that the products of ion-molecule reactions in mass spectrometers may be collected on surfaces to generate condensed matter and thus serve as building blocks to synthesize new compounds. The highly reactive fragment anion [B12 Br11 ]- was generated in a mass spectrometer and converted to [B12 Br11 N2 ]- in the presence of molecular nitrogen followed by its mass-selection and soft-landing on surfaces. The molecular structure of [B12 Br11 N2 ]- , which has not been synthetically obtained before, was confirmed by conventional methods of molecular analysis, including nuclear magnetic resonance and infrared spectroscopy. The [B12 Br11 N2 ]- ion is stable on surfaces and in solution at room temperature, but thermal annealing induces elimination of N2 and provides access to the highly reactive intermediate [B12 Br11 ]- in the condensed phase, which can be further used as a reagent, for example, for electrophilic aromatic substitutions. Thus, isolation of [B12 Br11 N2 ]- expands the repertoire of the available diazo ions that can be employed as versatile intermediates in various chemical transformations.

5.
Phys Chem Chem Phys ; 24(36): 21759-21772, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36097953

RESUMO

The highly reactive gaseous ion [B12Br11]- is a metal-free closed-shell anion which spontaneously forms covalent bonds with hydrocarbon molecules, including alkanes. Herein, we systematically investigate the reaction mechanism for binding of [B12Br11]- to the five hexane isomers yielding [B12Br11(C6H14)]-, as well as to cyclohexane and several hexene isomers (yielding [B12Br11(C6H12)]-) using collision-induced dissociation (CID), infrared photodissociation spectroscopy (IRPD) and computational methods. CID of the different [B12Br11(C6H14)]- ions results in distinct fragmentation patterns dependent on the structure of the hexane isomer. The observed fragmentation reactions provide insights into the addition mechanism of [B12Br11]- to hexane. Based on the observed CID patterns, we identified that either B-C bond formation through heterolytic C-C or C-H bond cleavages or B-H bond formation through heterolytic C-H cleavage occur dependent on the structure of the hexane isomer. Meanwhile, we observe identical CID spectra of adducts originating from isomers of C6H12. Spectroscopic investigations of adducts of 1-hexene and cyclohexane indicate the same product structure with an open C6 chain. Computational investigations evidenced that low lying transition states are present, which enable a ring opening reaction of cyclohexane when binding to [B12Br11]-.

6.
Anal Chem ; 93(43): 14489-14496, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34672519

RESUMO

We report the development of a new high-flux electrospray ionization-based instrument for soft landing of mass-selected fragment ions onto surfaces. Collision-induced dissociation is performed in a collision cell positioned after the dual electrodynamic ion funnel assembly. The high duty cycle of the instrument enables high-coverage deposition of mass-selected fragment ions onto surfaces at a defined kinetic energy. This capability facilitates the investigation of the reactivity of gaseous fragment ions in the condensed phase. We demonstrate that the observed reactions of deposited fragment ions are dependent on the structure of the ion and the composition of either ionic or neutral species codeposited onto a surface. The newly developed instrument provides access to high-purity ion fragments as building blocks for the preparation of unique ionic layers.


Assuntos
Gases , Espectrometria de Massas por Ionização por Electrospray , Íons
7.
Chemistry ; 27(40): 10274-10281, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34014012

RESUMO

Electrophilic anions of type [B12 X11 ]- posses a vacant positive boron binding site within the anion. In a comparatitve experimental and theoretical study, the reactivity of [B12 X11 ]- with X=F, Cl, Br, I, CN is characterized towards different nucleophiles: (i) noble gases (NGs) as σ-donors and (ii) CO/N2 as σ-donor-π-acceptors. Temperature-dependent formation of [B12 X11 NG]- indicates the enthalpy order (X=CN)>(X=Cl)≈(X=Br)>(X=I)≈(X=F) almost independent of the NG in good agreement with calculated trends. The observed order is explained by an interplay of the electron deficiency of the vacant boron site in [B12 X11 ]- and steric effects. The binding of CO and N2 to [B12 X11 ]- is significantly stronger. The B3LYP 0 K attachment enthapies follow the order (X=F)>(X=CN)>(X=Cl)>(X=Br)>(X=I), in contrast to the NG series. The bonding motifs of [B12 X11 CO]- and [B12 X11 N2 ]- were characterized using cryogenic ion trap vibrational spectroscopy by focusing on the CO and N2 stretching frequencies ν C O and ν N 2 , respectively. Observed shifts of ν C O and ν N 2 are explained by an interplay between electrostatic effects (blue shift), due to the positive partial charge, and by π-backdonation (red shift). Energy decomposition analysis and analysis of natural orbitals for chemical valence support all conclusions based on the experimental results. This establishes a rational understanding of [B12 X11 ]- reactivety dependent on the substituent X and provides first systematic data on π-backdonation from delocalized σ-electron systems of closo-borate anions.

8.
Angew Chem Int Ed Engl ; 60(47): 24910-24914, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34523217

RESUMO

While reactions between ions and neutral molecules in the gas phase have been studied extensively, reactions between molecular ions of same polarity remain relatively unexplored. Herein we show that reactions between fragment ions generated in the gas phase and molecular ions of the same polarity are possible by soft-landing of both reagents on surfaces. The reactive [B12 I11 ]1- anion was deposited on a surface layer built up by landing the generally unreactive [B12 I12 ]2- . Ex-situ analysis of the generated material shows that [B24 I23 ]3- was formed. A computational study shows that the product is metastable in the gas phase, but a charge-balanced environment of a grounded surface may stabilize the triply charged product, as suggested by model calculations. This opens new opportunities for the generation of highly charged clusters using unconventional building blocks from the gas phase.

9.
Chemistry ; 26(64): 14594-14601, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33017100

RESUMO

Nitro-functionalized undecahalogenated closo-dodecaborates [B12 X11 (NO2 )]2- were synthesized in high purities and characterized by NMR, IR, and Raman spectroscopy, single crystal X-diffraction, mass spectrometry, and gas-phase ion vibrational spectroscopy. The NO2 substituent leads to an enhanced electronic and electrochemical stability compared to the parent perhalogenated [B12 X12 ]2- (X=F-I) dianions evidenced by photoelectron spectroscopy, cyclic voltammetry, and quantum-chemical calculations. The stabilizing effect decreases from X=F to X=I. Thermogravimetric measurements of the salts indicate the loss of the nitric oxide radical (NO. ). The homolytic NO. elimination from the dianion under very soft collisional excitation in gas-phase ion experiments results in the formation of the radical [B12 X11 O]2-. . Theoretical investigations suggest that the loss of NO. proceeds via the rearrangement product [B12 X11 (ONO)]2- . The O-bonded nitrosooxy structure is thermodynamically more stable than the N-bonded nitro structure and its formation by radical recombination of [B12 X11 O]2-. and NO. is demonstrated.

10.
Phys Chem Chem Phys ; 22(47): 27732-27745, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33242322

RESUMO

Infrared photodissociation spectra of the D2-tagged microhydrated sulfate dianions with three to eight water molecules are presented over a broad spectral range that covers the OH stretching and H2O bending modes of the solvent molecules at higher energies, the sulfate stretching modes of the solute at intermediate energies and the intermolecular solute librational modes at the lowest energies. A low ion temperature combined with messenger-tagging ensures well-resolved vibrational spectra that allow for structure assignments based on a comparison to harmonic and anharmonic IR spectra from density functional theory (DFT) calculations. DFT ab initio molecular dynamics simulations are required to disentangle the broad and complex spectral signatures of microhydrated sulfate dianions in the OH stretching region and to identify systematic trends in the correlation of the strength and evolution of the solute-solvent and solvent-solvent interactions with cluster size. The onset for the formation of the second solvation shell is observed for n = 8.

11.
Phys Chem Chem Phys ; 21(22): 11651-11659, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31119259

RESUMO

We report on the gas phase vibrational spectroscopy of the hexahydrated sulfate dianion, SO42-(H2O)6, and its fully deuterated isotopologue, SO42-(D2O)6, using infrared photodissociation (IRPD) spectroscopy of the D2-tagged dianions in combination with density-functional-theory calculations on minimum-energy structures as well as finite temperature ab initio molecular dynamics (AIMD) simulations. The IRPD spectra were recorded at an ion trap temperature of 12 K and in the spectral range from 650 to 3800 cm-1, covering the intramolecular modes of the solvent (OH/OD stretches and H2O/D2O bends) at higher energies, those of the solute (sulfate stretches) at intermediate energies and the intermolecular solute librational modes at the lowest energies. Isomer-specific double resonance in combination with messenger-tag dependent IRPD spectra show that only a single isomer is contributing significantly and that this isomer is not the highly symmetric Td but rather the lower symmetry C3 isomer. Temperature-dependent IR multiple photon dissociation spectra of bare SO42-(H2O)6 suggest that the C3 isomer remains the most stable one up to 200 K. The AIMD simulations reveal that the IRPD spectra can only be fully understood when anharmonic effects as well as entropy-driven hydrogen bond network fluctuations are considered.

12.
Phys Chem Chem Phys ; 20(45): 28476-28486, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30412212

RESUMO

The influence of enthalpic and entropic effects as well as of kinetic trapping processes on the structure of Ar/D2-tagged Cs+(H2O)3 clusters is studied by temperature-dependent infrared photodissociation spectroscopy combined with harmonic vibrational spectra calculations and anharmonic free energy profiles from finite temperature metadynamics molecular dynamics simulations. Each tag favors a different hydrogen bond network of water molecules, with Ar-tagging (vs. D2-tagging) of Cs+(H2O)3 leading to the lower energy conformation. The relative population of these conformers can be tuned over a temperature range of 12 to 21 K. The formation mechanisms of these tagged clusters can be deduced from the free energy profiles. This investigation demonstrates that a variety of factors, both thermodynamic and kinetic, play a role in the structure of flexible molecular species, even at cryogenic temperatures.

13.
Angew Chem Int Ed Engl ; 57(25): 7448-7452, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29696767

RESUMO

Cryogenic ion vibrational spectroscopy was used in combination with electronic structure calculations to identify the active site in the oxygen atom transfer reaction [AlVO4 ]+. +CO→[AlVO3 ]+. +CO2 . Infrared photodissociation spectra of messenger-tagged heteronuclear clusters demonstrate that in contrast to [AlVO4 ]+. , [AlVO3 ]+. is devoid of a terminal Al-Ot unit while the terminal V=Ot group remains intact. Thus it is the Al-Ot moiety that forms the active site in the [AlVOx ]+. /CO/N2 O (x=3, 4) redox couples, which is in line with theoretical predictions.

14.
Proc Natl Acad Sci U S A ; 111(51): 18132-7, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489068

RESUMO

Theoretical models of proton hydration with tens of water molecules indicate that the excess proton is embedded on the surface of clathrate-like cage structures with one or two water molecules in the interior. The evidence for these structures has been indirect, however, because the experimental spectra in the critical H-bonding region of the OH stretching vibrations have been too diffuse to provide band patterns that distinguish between candidate structures predicted theoretically. Here we exploit the slow cooling afforded by cryogenic ion trapping, along with isotopic substitution, to quench water clusters attached to the H3O(+) and Cs(+) ions into structures that yield well-resolved vibrational bands over the entire 215- to 3,800-cm(-1) range. The magic H3O(+)(H2O)20 cluster yields particularly clear spectral signatures that can, with the aid of ab initio predictions, be traced to specific classes of network sites in the predicted pentagonal dodecahedron H-bonded cage with the hydronium ion residing on the surface.

15.
Phys Chem Chem Phys ; 18(38): 26743-26754, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27722600

RESUMO

We use cryogenic ion trap vibrational spectroscopy to study the structure of the protonated water pentamer, H+(H2O)5, and its fully deuterated isotopologue, D+(D2O)5, over nearly the complete infrared spectral range (220-4000 cm-1) in combination with harmonic and anharmonic electronic structure calculations as well as RRKM modelling. Isomer-selective IR-IR double-resonance measurements on the H+(H2O)5 isotopologue establish that the spectrum is due to a single constitutional isomer, thus discounting the recent analysis of the band pattern in the context of two isomers based on AIMD simulations 〈W. Kulig and N. Agmon, Phys. Chem. Chem. Phys., 2014, 16, 4933-4941〉. The evolution of the persistent bands in the D+(D2O)5 cluster allows the assignment of the fundamentals in the spectra of both isotopologues, and the simpler pattern displayed by the heavier isotopologue is consistent with the calculated spectrum for the branched, Eigen-based structure originally proposed 〈J.-C. Jiang, et al., J. Am. Chem. Soc., 2000, 122, 1398-1410〉. This pattern persists in the vibrational spectra of H+(H2O)5 in the temperature range from 13 K up to 250 K. The present study also underscores the importance of considering nuclear quantum effects in predicting the kinetic stability of these isomers at low temperatures.

16.
J Phys Chem A ; 119(10): 1859-66, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25647222

RESUMO

The strong temperature dependence of the I(-)·(H2O)2 vibrational predissociation spectrum is traced to the intracluster dissociation of the ion-bound water dimer into independent water monomers that remain tethered to the ion. The thermodynamics of this process is determined using van't Hoff analysis of key features that quantify the relative populations of H-bonded and independent water molecules. The dissociation enthalpy of the isolated water dimer is thus observed to be reduced by roughly a factor of three upon attachment to the ion. The cause of this reduction is explored with electronic structure calculations of the potential energy profile for dissociation of the dimer, which suggest that both reduction of the intrinsic binding energy and vibrational zero-point effects act to weaken the intermolecular interaction between the water molecules in the first hydration shell. Additional insights are obtained by analyzing how classical trajectories of the I(-)·(H2O)2 system sample the extended potential energy surface with increasing temperature.

17.
Angew Chem Int Ed Engl ; 53(52): 14407-10, 2014 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-25348666

RESUMO

A magnesium complex incorporating a novel metal-CO2 binding motif is spectroscopically identified. Here we show with the help of infrared photodissociation spectroscopy that the complex exists solely in the [ClMg(η(2) -O2 C)](-) form. This bidentate double oxygen metal-CO2 coordination has previously not been observed in neutral nor in charged unimetallic complexes. The antisymmetric CO2 stretching mode in [ClMg(η(2) -O2 C)](-) is found at 1128 cm(-1) , which is considerably redshifted from the corresponding mode in bare CO2 at 2349 cm(-1) , suggesting that the CO2 moiety has a considerable negative charge (∼1.8 e(-) ). We also employed electronic structure calculations and kinetic analysis to support the interpretation of the experimental results.

18.
J Phys Chem Lett ; 9(4): 798-803, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29360366

RESUMO

We report experimental vibrational action spectra (210-2200 cm-1) and calculated IR spectra, using recent ab initio potential energy and dipole moment surfaces, of H7O3+ and H9O4+. We focus on prominent far-IR bands, which postharmonic analyses show, arise from two types of intermolecular motions, i.e., hydrogen bond stretching and terminal water wagging modes, that are similar in both clusters. The good agreement between experiment and theory further validates the accuracy of the potential and dipole moment surfaces, which was used in a recent theoretical study that concluded that infrared photodissociation spectra of the cold clusters correspond to the Eigen isomer. The comparison between theory and experiment adds further confirmation of the need of postharmonic analysis for these clusters.

19.
J Phys Chem Lett ; 8(21): 5349-5354, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28976759

RESUMO

The vibrational spectroscopy of the cyanide-water complex and its fully deuterated isotopologue is studied in the spectral range from 800 to 3800 cm-1. Infrared/infrared double-resonance population labeling spectroscopy of the cryogenically cooled, messenger-tagged complexes isolates the spectral signature of the two quasi-isoenergetic, singly hydrogen-bonded isomers HOH···NC- and HOH···CN-. The infrared photodissociation spectra are assigned based on a comparison to simulated anharmonic spectra. Infrared multiple photon dissociation spectra in the temperature range from 6 to 300 K confirm the stability of the two isomers at lower temperatures and provide evidence for a considerably more dynamic structure, also involving doubly hydrogen-bonded configurations, at higher internal energies. The observed red shifts ΔνOH of the hydrogen-bonded O-H stretches, 671 cm-1 (HOH···NC-) and 812 cm-1 (HOH···CN-), confirm the universal correlation of ΔνOH with the corresponding proton affinities.

20.
Science ; 354(6316): 1131-1135, 2016 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-27934761

RESUMO

The Grotthuss mechanism explains the anomalously high proton mobility in water as a sequence of proton transfers along a hydrogen-bonded (H-bonded) network. However, the vibrational spectroscopic signatures of this process are masked by the diffuse nature of the key bands in bulk water. Here we report how the much simpler vibrational spectra of cold, composition-selected heavy water clusters, D+(D2O)n, can be exploited to capture clear markers that encode the collective reaction coordinate along the proton-transfer event. By complexing the solvated hydronium "Eigen" cluster [D3O+(D2O)3] with increasingly strong H-bond acceptor molecules (D2, N2, CO, and D2O), we are able to track the frequency of every O-D stretch vibration in the complex as the transferring hydron is incrementally pulled from the central hydronium to a neighboring water molecule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA