Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 90(5): 553-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21844882

RESUMO

Granulocyte macrophage-colony stimulating factor (GM-CSF) is a cytokine with the capacity to promote inflammation in a wide variety of infectious and inflammatory diseases. These conditions include allergic airway inflammation, which is driven by T-helper 2 (Th2) cells. Because of the importance of Th2 cells in parasite infections, we have investigated the role of GM-CSF in mice infected with the nematode Nippostrongylus brasiliensis. The effect of primary and secondary infection was investigated in mice lacking functional genes for GM-CSF (CSF2 genes) (ΔGM-CSF mice), and in mice lacking the cytokine receptor common ß chain (Δß mice), the latter being unable to signal in response to GM-CSF and interleukin (IL)-5. ΔGM-CSF mice showed no significant defect in parasite immunity, measured by larval numbers in the lungs, worm numbers in the intestine or egg numbers in the faeces, in either primary or secondary infection. By contrast, the Δß mice showed increased parasite burden, with higher numbers of lung larvae after secondary infection and higher numbers of intestinal worms and faecal eggs after both primary and secondary infection. Unexpectedly, there were increased numbers of circulating eosinophils in the ΔGM-CSF mice, associated with significantly reduced larval numbers in the lungs. These results indicate that GM-CSF is redundant in protection against N. brasiliensis infection, and that the increased susceptibility of Δß mice to infection is likely to be attributed to the lack of IL-5 signalling in these mice. The results suggest that clinical use of agents that neutralise GM-CSF may not be associated with increased risk of parasite infection.


Assuntos
Subunidade beta Comum dos Receptores de Citocinas/metabolismo , Eosinófilos/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Infecções por Strongylida/prevenção & controle , Animais , Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Imunoglobulina E/sangue , Intestinos/imunologia , Intestinos/parasitologia , Larva , Pulmão/imunologia , Pulmão/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Carga Parasitária , Células Th2/imunologia
2.
Int J Parasitol ; 37(12): 1367-78, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17555758

RESUMO

Eosinophils are an important feature of immune responses to infections with many of the tissue-invasive helminth parasites. The cytokine IL-5 and a high-affinity double GATA-binding site within the GATA-1 promoter are critical for eosinophilopoiesis. In this study, we believe we demonstrate for the first time that defects in eosinophilopoiesis are associated with impaired resistance to Nippostrongylus brasiliensis. Primary and secondary infections were established in wildtype (WT), IL-5(-/-) and DeltadblGATA mice. Resistance to secondary infections was impaired in IL-5(-/-) and DeltadblGATA mice, with significantly more larvae able to reach the lungs 2 days p.i. Pulmonary inflammation was minimal in all strains in the first 2 days of both primary and secondary infections, suggesting that eosinophil-dependent resistance occurred before larvae reached this site. Intestinal worm burdens and/or parasite egg production in primary infections were greater in animals with defective eosinophilopoiesis. While larvae did reach the gut by day 3 of secondary infections of WT and IL-5(-/-) mice, worms were expelled by day 7, even in the complete absence of eosinophils in tissues of the small intestine. This and our previous studies indicate that N. brasiliensis are likely to be exquisitely sensitive to attack by eosinophils soon after entry into the skin. Eosinophils in the gut may make a modest contribution to resistance on first exposure to the parasite, but are not required for expulsion in either primary or secondary infections. In order to mount an effective immune response it may be vital for the host to identify and attack the parasite before it implements immune evasion strategies and migrates to other anatomical sites. These observations may be of particular significance for the development of successful vaccines against hookworms and other nematodes.


Assuntos
Eosinófilos/imunologia , Interleucina-5/imunologia , Enteropatias Parasitárias/imunologia , Nippostrongylus/imunologia , Infecções por Strongylida/imunologia , Animais , Eosinófilos/parasitologia , Feminino , Interleucina-5/genética , Enteropatias Parasitárias/genética , Pulmão/imunologia , Pulmão/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos CBA , Nippostrongylus/genética , Contagem de Ovos de Parasitas , Pele/imunologia , Pele/parasitologia , Estatística como Assunto , Infecções por Strongylida/genética , Infecções por Strongylida/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA