Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Antimicrob Chemother ; 74(4): 865-876, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649386

RESUMO

OBJECTIVES: Previous studies in food-producing animals have shown associations between antimicrobial use (AMU) and resistance (AMR) in specifically isolated bacterial species. Multi-country data are scarce and only describe between-country differences. Here we investigate associations between the pig faecal mobile resistome and characteristics at the farm-level across Europe. METHODS: A cross-sectional study was conducted among 176 conventional pig farms from nine European countries. Twenty-five faecal samples from fattening pigs were pooled per farm and acquired resistomes were determined using shotgun metagenomics and the Resfinder reference database, i.e. the full collection of horizontally acquired AMR genes (ARGs). Normalized fragments resistance genes per kilobase reference per million bacterial fragments (FPKM) were calculated. Specific farm-level data (AMU, biosecurity) were collected. Random-effects meta-analyses were performed by country, relating farm-level data to relative ARG abundances (FPKM). RESULTS: Total AMU during fattening was positively associated with total ARG (total FPKM). Positive associations were particularly observed between widely used macrolides and tetracyclines, and ARGs corresponding to the respective antimicrobial classes. Significant AMU-ARG associations were not found for ß-lactams and only few colistin ARGs were found, despite high use of these antimicrobial classes in younger pigs. Increased internal biosecurity was directly related to higher abundances of ARGs mainly encoding macrolide resistance. These effects of biosecurity were independent of AMU in mutually adjusted models. CONCLUSIONS: Using resistome data in association studies is unprecedented and adds accuracy and new insights to previously observed AMU-AMR associations. Major components of the pig resistome are positively and independently associated with on-farm AMU and biosecurity conditions.


Assuntos
Criação de Animais Domésticos/métodos , Anti-Infecciosos/uso terapêutico , Biota/efeitos dos fármacos , Farmacorresistência Bacteriana , Uso de Medicamentos/estatística & dados numéricos , Fezes/microbiologia , Genes Bacterianos , Animais , Biologia Computacional , Estudos Transversais , Europa (Continente) , Metagenômica , Suínos
2.
J Antimicrob Chemother ; 74(9): 2596-2604, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31199864

RESUMO

OBJECTIVES: To determine associations between farm- and flock-level antimicrobial usage (AMU), farm biosecurity status and the abundance of faecal antimicrobial resistance genes (ARGs) on broiler farms. METHODS: In the cross-sectional pan-European EFFORT study, conventional broiler farms were visited and faeces, AMU information and biosecurity records were collected. The resistomes of pooled faecal samples were determined by metagenomic analysis for 176 farms. A meta-analysis approach was used to relate total and class-specific ARGs (expressed as fragments per kb reference per million bacterial fragments, FPKM) to AMU (treatment incidence per DDD, TIDDDvet) per country and subsequently across all countries. In a similar way, the association between biosecurity status (Biocheck.UGent) and the resistome was explored. RESULTS: Sixty-six (38%) flocks did not report group treatments but showed a similar resistome composition and roughly similar ARG levels to antimicrobial-treated flocks. Nevertheless, we found significant positive associations between ß-lactam, tetracycline, macrolide and lincosamide, trimethoprim and aminoglycoside antimicrobial flock treatments and ARG clusters conferring resistance to the same class. Similar associations were found with purchased products. In gene-level analysis for ß-lactams and macrolides, lincosamides and streptogramins, a significant positive association was found with the most abundant gene clusters blaTEM and erm(B). Little evidence was found for associations with biosecurity. CONCLUSIONS: The faecal microbiome in European broilers contains a high diversity of ARGs, even in the absence of current antimicrobial selection pressure. Despite this, the relative abundance of genes and the composition of the resistome is positively related to AMU in European broiler farms for several antimicrobial classes.


Assuntos
Anti-Infecciosos/uso terapêutico , Bactérias/efeitos dos fármacos , Galinhas/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Metagenômica , Microbiota/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Bactérias/genética , Biologia Computacional , Estudos Transversais , Europa (Continente) , Fazendas , Fezes/microbiologia , Microbiota/genética , Fatores de Risco
3.
Environ Sci Technol ; 49(2): 839-46, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25522137

RESUMO

Rapid sand filtration is essential at most waterworks that treat anaerobic groundwater. Often the filtration depends on microbiological processes, but the microbial communities of the filters are largely unknown. We determined the prokaryotic community structures of 11 waterworks receiving groundwater from different geological settings by 16S rRNA gene-based 454 pyrosequencing and explored their relationships to filtration technology and raw water chemistry. Most of the variation in microbial diversity observed between different waterworks sand filters could be explained by the geochemistry of the inlet water. In addition, our findings suggested four features of particular interest: (1) Nitrospira dominated over Nitrobacter at all waterworks, suggesting that Nitrospira is a key nitrifying bacterium in groundwater-treating sand filters. (2) Hyphomicrobiaceae species were abundant at all waterworks, where they may be involved in manganese oxidation. (3) Six of 11 waterworks had significant concentrations of methane in their raw water and very high abundance of the methanotrophic Methylococcaceae. (4) The iron-oxidizing bacteria Gallionella was present at all waterworks suggesting that biological iron oxidation is occurring in addition to abiotic iron oxidation. Elucidation of key members of the microbial community in groundwater-treating sand filters has practical potential, for example, when methods are needed to improve filter function.


Assuntos
Água Subterrânea/análise , Água Subterrânea/microbiologia , Poluentes da Água/análise , Purificação da Água/métodos , Amônia/química , Bactérias/genética , Carbono/química , Filtração , Ferro/química , Manganês/química , Metano/química , Nitrobacter/genética , RNA Ribossômico 16S/genética , Dióxido de Silício/química , Microbiologia da Água
4.
Appl Microbiol Biotechnol ; 98(5): 2335-44, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24562459

RESUMO

The Aminobacter sp. strain MSH1 has potential for pesticide bioremediation because it degrades the herbicide metabolite 2,6-dichlorobenzamide (BAM). Production of the BAM-degrading bacterium using aerobic bioreactor fermentation was investigated. A mineral salt medium limited for carbon and with an element composition similar to the strain was generated. The optimal pH and temperature for strain growth were determined using shaker flasks and verified in bioreactors. Glucose, fructose, and glycerol were suitable carbon sources for MSH1 (µ = 0.1 h(-1)); slower growth was observed on succinate and acetic acid (µ = 0.01 h(-1)). Standard conditions for growth of the MSH1 strain were defined at pH 7 and 25 °C, with glucose as the carbon source. In bioreactors (1 and 5 L), the specific growth rate of MSH1 increased from µ = 0.1 h(-1) on traditional mineral salt medium to µ = 0.18 h(-1) on the optimized mineral salt medium. The biomass yield under standard conditions was 0.47 g dry weight biomass/g glucose consumed. An investigation of the catabolic capacity of MSH1 cells harvested in exponential and stationary growth phases showed a degradation activity per cell of about 3 × 10(-9) µg BAM h(-1). Thus, fast, efficient, large-scale production of herbicide-degrading Aminobacter was possible, bringing the use of this bacterium in bioaugmentation field remediation closer to reality.


Assuntos
Reatores Biológicos/microbiologia , Phyllobacteriaceae/crescimento & desenvolvimento , Benzamidas/metabolismo , Biomassa , Biotransformação , Carbono/metabolismo , Meios de Cultura/química , Poluentes Ambientais/metabolismo , Herbicidas/metabolismo , Concentração de Íons de Hidrogênio , Phyllobacteriaceae/metabolismo , Temperatura
5.
Environ Int ; 143: 105971, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32738764

RESUMO

BACKGROUND: Livestock farms are a reservoir of antimicrobial resistant bacteria from feces. Airborne dust-bound bacteria can spread across the barn and to the outdoor environment. Therefore, exposure to farm dust may be of concern for animals, farmers and neighboring residents. Although dust is a potential route of transmission, little is known about the resistome and bacterial microbiome of farm dust. OBJECTIVES: We describe the resistome and bacterial microbiome of pig and poultry farm dust and their relation with animal feces resistomes and bacterial microbiomes, and on-farm antimicrobial usage (AMU). In addition, the relation between dust and farmers' stool resistomes was explored. METHODS: In the EFFORT-study, resistomes and bacterial microbiomes of indoor farm dust collected on Electrostatic Dust fall Collectors (EDCs), and animal feces of 35 conventional broiler and 44 farrow-to-finish pig farms from nine European countries were determined by shotgun metagenomic analysis. The analysis also included 79 stool samples from farmers working or living at 12 broiler and 19 pig farms and 46 human controls. Relative abundance of and variation in resistome and bacterial composition of farm dust was described and compared to animal feces and farmers' stool. RESULTS: The farm dust resistome contained a large variety of antimicrobial resistance genes (ARGs); more than the animal fecal resistome. For both poultry and pigs, composition of dust resistomes finds (partly) its origin in animal feces as dust resistomes correlated significantly with fecal resistomes. The dust bacterial microbiome also correlated significantly with the dust resistome composition. A positive association between AMU in animals on the farm and the total abundance of the dust resistome was found. Occupational exposure to pig farm dust or animal feces may contribute to farmers' resistomes, however no major shifts in farmers resistome towards feces or dust resistomes were found in this study. CONCLUSION: Poultry and pig farm dust resistomes are rich and abundant and associated with the fecal resistome of the animals and the dust bacterial microbiome.


Assuntos
Microbiota , Aves Domésticas , Animais , Antibacterianos/farmacologia , Bactérias/genética , Galinhas , Farmacorresistência Bacteriana , Poeira , Europa (Continente) , Fazendas , Suínos
6.
mSystems ; 1(5)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822556

RESUMO

Explorations of complex microbiomes using genomics greatly enhance our understanding about their diversity, biogeography, and function. The isolation of DNA from microbiome specimens is a key prerequisite for such examinations, but challenges remain in obtaining sufficient DNA quantities required for certain sequencing approaches, achieving accurate genomic inference of microbiome composition, and facilitating comparability of findings across specimen types and sequencing projects. These aspects are particularly relevant for the genomics-based global surveillance of infectious agents and antimicrobial resistance from different reservoirs. Here, we compare in a stepwise approach a total of eight commercially available DNA extraction kits and 16 procedures based on these for three specimen types (human feces, pig feces, and hospital sewage). We assess DNA extraction using spike-in controls and different types of beads for bead beating, facilitating cell lysis. We evaluate DNA concentration, purity, and stability and microbial community composition using 16S rRNA gene sequencing and for selected samples using shotgun metagenomic sequencing. Our results suggest that inferred community composition was dependent on inherent specimen properties as well as DNA extraction method. We further show that bead beating or enzymatic treatment can increase the extraction of DNA from Gram-positive bacteria. Final DNA quantities could be increased by isolating DNA from a larger volume of cell lysate than that in standard protocols. Based on this insight, we designed an improved DNA isolation procedure optimized for microbiome genomics that can be used for the three examined specimen types and potentially also for other biological specimens. A standard operating procedure is available from https://dx.doi.org/10.6084/m9.figshare.3475406. IMPORTANCE Sequencing-based analyses of microbiomes may lead to a breakthrough in our understanding of the microbial worlds associated with humans, animals, and the environment. Such insight could further the development of innovative ecosystem management approaches for the protection of our natural resources and the design of more effective and sustainable solutions to prevent and control infectious diseases. Genome sequence information is an organism (pathogen)-independent language that can be used across sectors, space, and time. Harmonized standards, protocols, and workflows for sample processing and analysis can facilitate the generation of such actionable information. In this study, we assessed several procedures for the isolation of DNA for next-generation sequencing. Our study highlights several important aspects to consider in the design and conduct of sequence-based analysis of microbiomes. We provide a standard operating procedure for the isolation of DNA from a range of biological specimens particularly relevant in clinical diagnostics and epidemiology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA