Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Mater ; 22(5): 656-665, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36959501

RESUMO

Tumour-derived exosomes (T-EXOs) impede immune checkpoint blockade therapies, motivating pharmacological efforts to inhibit them. Inspired by how antiviral curvature-sensing peptides disrupt membrane-enveloped virus particles in the exosome size range, we devised a broadly useful strategy that repurposes an engineered antiviral peptide to disrupt membrane-enveloped T-EXOs for synergistic cancer immunotherapy. The membrane-targeting peptide inhibits T-EXOs from various cancer types and exhibits pH-enhanced membrane disruption relevant to the tumour microenvironment. The combination of T-EXO-disrupting peptide and programmed cell death protein-1 antibody-based immune checkpoint blockade therapy improves treatment outcomes in tumour-bearing mice. Peptide-mediated disruption of T-EXOs not only reduces levels of circulating exosomal programmed death-ligand 1, but also restores CD8+ T cell effector function, prevents premetastatic niche formation and reshapes the tumour microenvironment in vivo. Our findings demonstrate that peptide-induced T-EXO depletion can enhance cancer immunotherapy and support the potential of peptide engineering for exosome-targeting applications.


Assuntos
Exossomos , Neoplasias , Camundongos , Animais , Exossomos/metabolismo , Inibidores de Checkpoint Imunológico/metabolismo , Imunoterapia , Neoplasias/terapia , Peptídeos/farmacologia , Peptídeos/metabolismo , Antivirais , Microambiente Tumoral
2.
Phys Rev Lett ; 129(3): 037202, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35905335

RESUMO

We theoretically demonstrate the spin swapping effect of band structure origin in centrosymmetric ferromagnets. It is mediated by an orbital degree of freedom but does not require inversion asymmetry or impurity spin-orbit scattering. Analytic and tight-binding models reveal that it originates mainly from k points where bands with different spins and different orbitals are nearly degenerate, and thus it has no counterpart in normal metals. First-principle calculations for centrosymmetric 3d transition-metal ferromagnets show that the spin swapping conductivity of band structure origin can be comparable in magnitude to the intrinsic spin Hall conductivity of Pt. Our theory generalizes transverse spin currents generated by ferromagnets and emphasizes the important role of the orbital degree of freedom in describing spin-orbit-coupled transport in centrosymmetric materials.

3.
Nat Mater ; 18(7): 685-690, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31133731

RESUMO

Symmetry breaking is a fundamental concept that prevails in many branches of physics1-5. In magnetic materials, broken inversion symmetry induces the Dzyaloshinskii-Moriya interaction (DMI), which results in fascinating physical behaviours6-14 with the potential for application in future spintronic devices15-17. Here, we report the observation of a bulk DMI in GdFeCo amorphous ferrimagnets. The DMI is found to increase linearly with an increasing thickness of the ferrimagnetic layer, which is a clear signature of the bulk nature of DMI. We also found that the DMI is independent of the interface between the heavy metal and ferrimagnetic layer. This bulk DMI is attributed to an asymmetric distribution of the elemental content in the GdFeCo layer, with spatial inversion symmetry broken throughout the layer. We expect that our experimental identification of a bulk DMI will open up additional possibilities to exploit this interaction in a wide range of materials.

4.
Acc Chem Res ; 52(7): 1771-1782, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31241894

RESUMO

Growth in the knowledge of cancer biology has led to the emergence and evolution of cancer nanomedicines by providing the rationale for leveraging nanotechnology to develop better treatment options. The discovery of nanometer-sized intercellular openings in the defective angiogenic tumor vasculature contributed to the development of an idea for the well-known cancer passive targeting regime, enhanced permeability and retention (EPR) effect, of the nanomedicines. Recently, reactive oxygen species (ROS) have been highlighted as one of the key players that underlie the acquisition of the various hallmarks of cancer. As ROS are associated with all stages of cancer, their applications in cancer treatment based on the following concentration-dependent implications have attracted much attention: (1) low to moderate levels of ROS as key signaling molecules, (2) elevated levels of ROS in cancer cells as one of the unique characteristics of cancer, and (3) excessive levels of ROS as cytotoxic agents. Considering ROS from a different point of view, various cancer nanomedicines have been designed to achieve spatiotemporal control of therapeutic action, the main research focus in this area. This Account includes our efforts and preclinical achievements in development of nanomedicines for a range of ROS-mediated cancer therapies. It begins with general background regarding cancer nanomedicines, the significance of ROS in cancer, and a brief overview of ROS-mediated approaches for cancer therapy. Then, this Account highlights the two key roles of ROS that define therapeutic purposes of cancer nanomedicines: (1) ROS as drug delivery enhancers and (2) ROS as cell death inducers. The former inspired us to develop nitric oxide-generating nanoparticles for improved EPR effect, endogenous ROS-responsive polymeric micelles for enhanced intracellular drug delivery, and exogenous ROS-activated micelles for subcellular localization via photochemical internalization. While refining conventional chemotherapy, recent researches also have focused on the latter, the cytotoxic ROS, to advance alternative treatment modalities such as oxidation therapy, photodynamic therapy (PDT), and sonodynamic therapy (SDT). In particular, we have been motivated to develop polymeric nanoreactors containing enzymes to produce H2O2 for oxidation therapy, photosensitizer-loaded gold-nanoclustered polymeric nanoassemblies for photothermally activated PDT overcoming the oxygen dependency of PDT, and hydrophilized TiO2 nanoparticles and Au-TiO2 nanocomposites as novel sonosensitizers for improved SDT efficiency. The integration of nanomedicine and ROS-mediated therapy has emerged as the new paradigm in the treatment of cancer, based on promising proof-of-concept demonstrations in preclinical studies. Further efforts to ensure clinical translation along with more sophisticated cancer nanomedicines to address relevant challenges are expected to be made in the coming years.


Assuntos
Antineoplásicos/uso terapêutico , Nanopartículas Metálicas/uso terapêutico , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Glucose Oxidase/química , Humanos , Camundongos , Nanomedicina/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Terapia por Ultrassom/métodos , Verteporfina/uso terapêutico
5.
Nano Lett ; 18(4): 2637-2644, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29521509

RESUMO

Conventional cancer targeting with nanoparticles has been based on the assumed enhanced permeability and retention (EPR) effect. The data obtained in clinical trials to date, however, have rarely supported the presence of such an effect. To address this challenge, we formulated intracellular nitric oxide-generating nanoparticles (NO-NPs) for the tumor site-specific delivery of NO, a well-known vasodilator, with the intention of boosting EPR. These nanoparticles are self-assembled under aqueous conditions from amphiphilic copolymers of poly(ethylene glycol) and nitrated dextran, which possesses inherent NO release properties in the reductive environment of cancer cells. After systemic administration of the NO-NPs, we quantitatively assessed and visualized increased tumor blood flow as well as enhanced vascular permeability than could be achieved without NO. Additionally, we prepared doxorubicin (DOX)-encapsulated NO-NPs and demonstrated consequential improvement in therapeutic efficacy over the control groups with considerably improved DOX intratumoral accumulation. Overall, this proof of concept study implies a high potency of the NO-NPs as an EPR enhancer to achieve better clinical outcomes.

6.
Nano Lett ; 16(10): 6257-6264, 2016 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-27643533

RESUMO

Although sonodynamic therapy (SDT) has emerged as a potential alternative to conventional photodynamic therapy, the low quantum yield of the sonosensitizer such as TiO2 nanoparticles (NPs) is still a major concern. Here, we have developed hydrophilized Au-TiO2 nanocomposites (HAu-TiO2 NCs) as sonosensitizers for improved SDT. The physicochemical properties of HAu-TiO2 NCs were thoroughly studied and compared with their counterparts without gold deposition. Upon exposure of HAu-TiO2 NCs to ultrasound, a large quantity of reactive oxygen species (ROS) were generated, leading to complete suppression of tumor growth after their systemic administration in vivo. Overall, it was evident that the composites of gold with TiO2 NPs significantly augmented the levels of ROS generation, implying their potential as SDT agents for cancer therapy.

7.
Nanotechnology ; 27(17): 175102, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-26987360

RESUMO

A biocompatible polymer-gold nanorod (P-AuNR) conjugate was developed as a thermo-chemotherapeutic nano-sized drug carrier for cancer therapy using near-infrared (NIR) light as an external trigger. The amphiphilic polymer, poly(ethylene glycol)-block-poly(caprolactone) (PEG-b-PCL) bearing a disulfide bond, was prepared using a facile synthetic route via copper(I)-free click chemistry and covalently linked to AuNR. The chemical structures and successful conjugation of PEG-b-PCL were analyzed using (1)H NMR and FT-IR. Doxorubicin (DOX), a hydrophobic anticancer drug, was effectively loaded into the hydrophobic PCL domain of P-AuNR through a simple dialysis method. P-AuNR showed longitudinal plasmon resonance absorption at the NIR region, thus generating heat under irradiation at 808 nm. Interestingly, exposure of P-AuNRs to NIR induced a structural change in the PCL block from a crystalline to an amorphous state, leading to the temporally controlled release of DOX. No significant release of DOX was observed from P-AuNRs under physiological conditions (pH 7.4), whereas the release rate of DOX was remarkably enhanced in response to NIR irradiation. In vitro cellular experiments to assess cytotoxicity and intracellular drug release behavior of DOX-P-AuNRs demonstrated that the release of DOX could be selectively regulated by NIR irradiation. Overall, DOX-P-AuNRs might have the potential to overcome the indiscriminate toxicity of free DOX.


Assuntos
Portadores de Fármacos/química , Ouro/química , Raios Infravermelhos , Lactonas/química , Nanotubos/química , Polietilenoglicóis/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Humanos , Espectroscopia de Ressonância Magnética , Neoplasias/tratamento farmacológico , Fototerapia , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
8.
Biomacromolecules ; 16(2): 447-56, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25565417

RESUMO

The major issues of self-assembled nanoparticles as drug carriers for cancer therapy include biostability and tumor-targetability because the premature drug release from and nonspecific accumulation of the drug-loaded nanoparticles may cause undesirable toxicity to normal organs and lower therapeutic efficacy. In this study, we developed robust and tumor-targeted nanocarriers based on an amphiphilic hyaluronic acid (HA)-polycaprolactone (PCL) block copolymer, in which the HA shell was cross-linked via a bioreducible disulfide linkage. Doxorubicin (DOX), chosen as a model anticancer drug, was effectively encapsulated into the nanoparticles with high drug loading efficiency. The DOX-loaded bioreducible HA nanoparticles (DOX-HA-ss-NPs) greatly retarded the drug release under physiological conditions (pH 7.4), whereas the drug release rate was markedly enhanced in the presence of glutathione, a thiol-containing tripeptide capable of reducing disulfide bonds in the cytoplasm. Furthermore, DOX-HA-ss-NPs could effectively deliver the DOX into the nuclei of SCC7 cells in vitro as well as to tumors in vivo after systemic administration into SCC7 tumor-bearing mice, resulting in improved antitumor efficacy in tumor-bearing mice. Overall, it was demonstrated that bioreducible shell-cross-linked nanoparticles could be used as a potential carrier for cancer therapy.


Assuntos
Antineoplásicos/metabolismo , Materiais Biocompatíveis/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Ácido Hialurônico/metabolismo , Nanopartículas/metabolismo , Neoplasias/metabolismo , Animais , Antineoplásicos/administração & dosagem , Materiais Biocompatíveis/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/metabolismo , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/metabolismo , Ácido Hialurônico/administração & dosagem , Camundongos , Camundongos Nus , Células NIH 3T3 , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
9.
J Nanosci Nanotechnol ; 13(11): 7312-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245249

RESUMO

Polysialic acid (PSA), a natural hydrophilic polysaccharide, is a potential alternative to poly(ethylene glycol) as the hydrophilic constituent of the polymeric amphiphiles for biomedical applications. In this study, amphiphilic block copolymers were prepared based on PSA as the hydrophilic block and polycaprolactone (PCL) as the hydrophobic block. The block copolymers formed micelles with spherical shapes in an aqueous environment. The average sizes of the nanoparticles were in the range of 270-390 nm, depending on the block length of PCL. The zeta potential values of the micelles were approximately -20 mV due to the negatively charged carboxylic acids of PSA. The nanoparticles showed good stability for five days in a physiological solution (pH 7.4), and had low critical micelle concentration values (1.68-8.54 microg/ml). The in-vitro cytotoxicity tests confirmed that the PSA-PCL micelles had little cytotoxicity. All these results suggest that the PSA-PCL block copolymers can form nano-sized micelles with high stability and low toxicity, implying their high potential for biomedical application.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Cristalização/métodos , Nanocápsulas/química , Nanocápsulas/toxicidade , Ácidos Siálicos/química , Ácidos Siálicos/toxicidade , Animais , Linhagem Celular Tumoral , Interações Hidrofóbicas e Hidrofílicas , Substâncias Macromoleculares/química , Substâncias Macromoleculares/toxicidade , Teste de Materiais , Camundongos , Conformação Molecular , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície
10.
J Nanosci Nanotechnol ; 13(11): 7271-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24245242

RESUMO

The carboxymethyl dextran-y-cyclodextrin (CMD-yCD) conjugate was prepared as the carrier for the delivery of the poorly water-soluble anticancer drug, doxorubicin (DOX). The conjugate could form self-assembled nanoparticles (315 nm in diameter) in an aqueous solution, which might be due to the hydrogen bonding among yCD molecules in the conjugate. DOX was effectively encapsulated into CMD-yCD nanoparticles (CMD-NPs) by the emulsion method. In particular, regardless of the feed amount of DOX, its loading efficiencies were always greater than 70%. CMD-NPs released DOX in a sustained manner, owing to the inclusion complex formation between DOX and yCD. When Cy5.5-labeled CMD-NPs were treated with SCC7 cancer cells, strong fluorescence signals were observed at the cytosol, indicating effective intracellular uptake. In addition, DOX-loaded CMD-NPs exhibited dose-dependent cytotoxicity to SCC7 cancer cells. However, the empty nanoparticles did not show toxicity to the cells, implying their high biocompatibility. Overall, these results suggest that the CMD-gammaCD conjugate could be a useful carrier for the delivery of DOX.


Assuntos
Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Difusão , Camundongos , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Resultado do Tratamento
11.
Biomater Res ; 27(1): 81, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635253

RESUMO

BACKGROUND: Exosomes are extracellular vesicles secreted by eukaryotic cells and have been extensively studied for their surface markers and internal cargo with unique functions. A deeper understanding of exosomes has allowed their application in various research areas, particularly in diagnostics and therapy. MAIN BODY: Exosomes have great potential as biomarkers and delivery vehicles for encapsulating therapeutic cargo. However, the limitations of bare exosomes, such as rapid phagocytic clearance and non-specific biodistribution after injection, pose significant challenges to their application as drug delivery systems. This review focuses on exosome-based drug delivery for treating rheumatoid arthritis, emphasizing pre/post-engineering approaches to overcome these challenges. CONCLUSION: This review will serve as an essential resource for future studies to develop novel exosome-based therapeutic approaches for rheumatoid arthritis. Overall, the review highlights the potential of exosomes as a promising therapeutic approach for rheumatoid arthritis treatment.

12.
Adv Sci (Weinh) ; 9(5): e2103245, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34927389

RESUMO

Despite their potent antitumor activity, clinical application of immune checkpoint inhibitors has been significantly limited by their poor response rates (<30%) in cancer patients, primarily due to immunosuppressive tumor microenvironments. As a representative immune escape mechanism, cancer-derived exosomes have recently been demonstrated to exhaust CD8+ cytotoxic T cells. Here, it is reported that sulfisoxazole, a sulfonamide antibacterial, significantly decreases the exosomal PD-L1 level in blood when orally administered to the tumor-bearing mice. Consequently, sulfisoxazole effectively reinvigorates exhausted T cells, thereby eliciting robust antitumor effects in combination with anti-PD-1 antibody. Overall, sulfisoxazole regulates immunosuppression through the inhibition of exosomal PD-L1, implying its potential to improve the response rate of anti-PD-1 antibodies.


Assuntos
Antígeno B7-H1 , Exossomos , Inibidores de Checkpoint Imunológico , Neoplasias , Sulfisoxazol , Animais , Antígeno B7-H1/antagonistas & inibidores , Exossomos/efeitos dos fármacos , Exossomos/imunologia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Camundongos , Neoplasias/tratamento farmacológico , Sulfisoxazol/farmacologia , Sulfisoxazol/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos
13.
Sci Rep ; 11(1): 20884, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686705

RESUMO

Electrical conduction in magnetic materials depends on their magnetization configuration, resulting in various magnetoresistances (MRs). The microscopic mechanisms of MR have so far been attributed to either an intrinsic or extrinsic origin, yet the contribution and temperature dependence of either origin has remained elusive due to experimental limitations. In this study, we independently probed the intrinsic and extrinsic contributions to the anisotropic MR (AMR) of a permalloy film at varying temperatures using temperature-variable terahertz time-domain spectroscopy. The AMR induced by the scattering-independent intrinsic origin was observed to be approximately 1.5% at T = 16 K and is virtually independent of temperature. In contrast, the AMR induced by the scattering-dependent extrinsic contribution was approximately 3% at T = 16 K but decreased to 1.5% at T = 155 K, which is the maximum temperature at which the AMR can be resolved using THz measurements. Our results experimentally quantify the temperature-dependent intrinsic and extrinsic contributions to AMR, which can stimulate further theoretical research to aid the fundamental understanding of AMR.

14.
Biomaterials ; 276: 121058, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34399119

RESUMO

Immune checkpoint therapy (ICT), which reinvigorates cytotoxic T cells, provides clinical benefits as an alternative to conventional cancer therapies. However, its clinical response rate is too low to treat an immune-excluded tumor, owing to the presence of abundant stromal elements impeding the penetration of immune cells. Here, we report that macitentan, a dual endothelin receptor antagonist approved by the FDA to treat pulmonary arterial hypertension, can be repositioned to modulate the desmoplastic tumor microenvironment (TME). In the 4T1 orthotopic tumor model, the polymeric nanoparticles bearing macitentan (M-NPs) prevent fibrotic progression by regulating the function of cancer-associated fibroblasts, attenuate the biogenesis of cancer cell-derived exosomes, and modulate the T cell subsets and distribution in TME. These results demonstrate that the M-NPs effectively reorganize the immunosuppressive TME by targeting the endothelin-1 axis and consequently exhibit synergistic antitumor effects in combination with ICT.


Assuntos
Nanopartículas , Microambiente Tumoral , Inibidores de Checkpoint Imunológico , Pirimidinas , Sulfonamidas/farmacologia
15.
Acta Biomater ; 128: 462-473, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33878476

RESUMO

Although tolerogenic dendritic cell-derived exosomes (TolDex) have emerged as promising therapeutics for rheumatoid arthritis (RA), their clinical applications have been hampered by their poor in vivo disposition after systemic administration. Herein, we report the development of stimuli-responsive TolDex that induces lesion-specific immunoregulation in RA. Responsiveness to reactive oxygen species (ROS), a physiological stimulus in the RA microenvironment, was conferred on TolDex by introducing a thioketal (TK) linker-embedded poly(ethylene glycol) (PEG) on TolDex surface via hydrophobic insertion. The detachment of PEG following overproduction of ROS facilitates the cellular uptake of ROS-responsive TolDex (TKDex) into activated immune cells. Notably, TolDex and TKDex downregulated CD40 in mature dendritic cells (mDCs) and regulated secretion of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α and interleukin-6 (IL-6) at the cellular level. In the collagen-induced arthritis (CIA) mouse model, PEG prolonged the blood circulation of TKDex following intravenous administration and enhanced their accumulation in the joints. In addition, TKDex decreased IL-6, increased transforming growth factor-ß, and induced the CD4+CD25+Foxp3+ regulatory T cells in CIA mice. Overall, ROS-responsive TolDex might have potential as therapeutic agents for RA. STATEMENT OF SIGNIFICANCE: Tolerogenic dendritic cell-derived exosomes (TolDex) are emerging immunoregulators of autoimmune diseases, including rheumatoid arthritis (RA). However, their lack of long-term stability and low targetability are still challenging. To overcome these issues, we developed reactive oxygen species (ROS)-responsive TolDex (TKDex) by incorporating the ROS-sensitive functional group-embedded poly(ethylene glycol) linker into the exosomal membrane of TolDex. Surface-engineered TKDex were internalized in mature DCs because of high ROS-sensitivity and enhanced accumulation in the inflamed joint in vivo. Further, for the first time, we investigated the potential mechanism of action of TolDex relevant to CD40 downregulation and attenuation of tumor necrosis factor (TNF)-α secretion. Our strategy highlighted the promising nanotherapeutic effects of stimuli-sensitive TolDex, which induces immunoregulation.


Assuntos
Artrite Experimental , Artrite Reumatoide , Exossomos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Citocinas , Células Dendríticas , Camundongos , Espécies Reativas de Oxigênio
16.
Nat Commun ; 12(1): 6710, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795204

RESUMO

The orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment. Analysis of the magnetic torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal, which competes with the contribution from the spin Hall effect. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering.

17.
Adv Mater ; 32(16): e1907953, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125731

RESUMO

Necroptosis, caspase-independent programmed necrosis, has emerged as a therapeutic target to make dying cancer cells stimulants for antitumor immune responses. The clinical translations exploiting necroptosis, however, have been limited since most cancer cells downregulate receptor-interacting protein kinase 3 (RIPK3) as a key enzyme for necroptosis. Herein, nanobubbles (NBs) that can trigger RIPK3-independent necroptosis, facilitating cell-membrane rupture via the acoustic cavitation effect are reported. The NBs, imbibing perfluoropentane as the gas precursor, are prepared using an amphiphilic polymer conjugate, composed of PEGylated carboxymethyl dextran as the hydrophilic backbone and chlorin e6 as the hydrophobic sonosensitizer. When exposed to ultrasound, the NBs efficiently promote the release of biologically active damage-associated molecular patterns by inducing burst-mediated cell-membrane disintegration. Consequently, the necroptosis-inducible NBs significantly improve antitumor immunity by maturation of dendritic cells and activation of CD8+ cytotoxic T cells both in vitro and in vivo. In addition, the combination of NBs and immune checkpoint blockade leads to complete regression of the primary tumor and beneficial therapeutic activity against metastatic tumors in an RIPK3-deficient CT26 tumor-bearing mouse model. Overall, the innovative NB that causes immunogenic cell death of cancer via RIPK3-independent necroptosis is a promising enhancer for cancer immunotherapy.


Assuntos
Acústica , Imunoterapia/métodos , Nanoestruturas/química , Necroptose/efeitos dos fármacos , Necroptose/imunologia , Polímeros/química , Polímeros/farmacologia , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Camundongos
18.
Pharmaceutics ; 11(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795253

RESUMO

Although self-assembled nanoparticles (SNPs) have been used extensively for targeted drug delivery, their clinical applications have been limited since most of the drugs are released into the blood before they reach their target site. In this study, metal-phenolic network (MPN)-coated SNPs (MPN-SNPs), which consist of an amphiphilic hyaluronic acid derivative, were prepared to be a pH-responsive nanocarrier to facilitate drug release in tumor microenvironments (TME). Due to their amphiphilic nature, SNPs were capable of encapsulating doxorubicin (DOX), chosen as the model anticancer drug. Tannic acid and FeCl3 were added to the surface of the DOX-SNPs, which allowed them to be readily coated with MPNs as the diffusion barrier. The pH-sensitive MPN corona allowed for a rapid release of DOX and effective cellular SNP uptake in the mildly acidic condition (pH 6.5) mimicking TME, to which the hyaluronic acid was exposed to facilitate receptor-mediated endocytosis. The DOX-loaded MPN-SNPs exhibited a higher cytotoxicity for the cancer cells, suggesting their potential use as a drug carrier in targeted cancer therapy.

19.
Adv Healthc Mater ; 8(4): e1801320, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30666822

RESUMO

Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Imunoterapia , Nanomedicina , Nanoestruturas/uso terapêutico , Neoplasias/terapia , Linfócitos T/imunologia , Células Apresentadoras de Antígenos/patologia , Humanos , Neoplasias/imunologia , Neoplasias/patologia , Linfócitos T/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-30159310

RESUMO

The conventional chemotherapeutic agents, used for cancer chemotherapy, have major limitations including non-specificity, ubiquitous biodistribution, low concentration in tumor tissue, and systemic toxicity. In recent years, owing to their unique features, polymeric nanoparticles have been widely used for the target-specific delivery of drugs in the body. Although polymeric nanoparticles have addressed a number of important issues, the bioavailability of drugs at the disease site, and especially upon cellular internalization, remains a challenge. A polymer nanocarrier system with a stimuli-responsive property (e.g., pH, temperature, or redox potential), for example, would be amenable to address the intracellular delivery barriers by taking advantage of pH, temperature, or redox potentials. With a greater understanding of the difference between normal and pathological tissues, there is a highly promising role of stimuli-responsive nanocarriers for drug delivery in the future. In this review, we highlighted the recent advances in different types of stimuli-responsive polymers for drug delivery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA