Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34281169

RESUMO

The inelastic interaction between the incident photons and acoustic phonons in the taurine single crystal was investigated by using Brillouin spectroscopy. Three acoustic phonons propagating along the crystallographic b-axis were investigated over a temperature range of -185 to 175 °C. The temperature dependences of the sound velocity, the acoustic absorption coefficient, and the elastic constants were determined for the first time. The elastic behaviors could be explained based on normal lattice anharmonicity. No evidence for the structural phase transition was observed, consistent with previous structural studies. The birefringence in the ac-plane indirectly estimated from the split longitudinal acoustic modes was consistent with one theoretical calculation by using the extrapolation of the measured dielectric functions in the infrared range.


Assuntos
Taurina/química , Acústica , Cristalização , Cristalografia , Elasticidade , Fótons , Análise Espectral
2.
J Nanosci Nanotechnol ; 19(3): 1695-1698, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469248

RESUMO

The outcoupling efficiencies (OCEs) of organic light-emitting diodes (OLEDs) were studied for a fractal-like two-dimensional structure consisting of three layers of semicircular microlens on a glass substrate using a finite-difference time-domain (FDTD) method. The OCE with only one semicircular microlens layer was 29.5%, 1.75 times larger than that of the basic OLED. Additional layers with smaller diameters on the first layer did not improve the OCE. The OCE remained constant or slightly decreased with the increase of the number of layers. Two possible origins of this result were suggested; first, the possibility that the escaped light enters the nearby microlens becomes higher with the introduction of an additional protruded layer; second, the Mie scattering effect becomes important with the decrease of the diameter of the semicircular microlens from 20 µm to 0.8 µm. An additional FDTD simulation was performed for the OLED with only one microlens array as a function of the diameter. The OCE decreased approximately monotonously with the decrease of the diameter from 20 µm to 0.2 µm. In particular, the OCE became lower than that of the basic OLED when the diameter decreased from 0.5 µm to 0.2 µm. This is consistent with the observation that smaller fractal-like structures on the large microlens array did not further enhance the OCE.

3.
J Nanosci Nanotechnol ; 18(9): 6017-6020, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29677736

RESUMO

Hole mobility characteristics were investigated with surface roughness and silicon-on-insulator (SOI) thickness variations to investigate the influence of surface roughness to mobility. The root mean square roughness varied between 0.16, 0.85 and 10.6 nm in 220, 100 and 40 nm thick SOI samples. Hole mobility was measured and analyzed as a function of effective field and temperature with the variations of surface roughness. The hole mobility, determined by transconductance, greatly decreased with the increase of effective field due to the increased surface roughness scattering in 40 nm thick SOI samples. On the other hand, phonon scattering was a dominant mechanism with the increase of temperature, irrespective of surface roughness and SOI thickness. The induced surface roughness of the devices increases the phonon scattering, thereby reducing the electron and hole mobility. The hole mobility decreases with the roughening of the samples, with the increase of temperature due to increased phonon scattering. Therefore, for enhanced mobility, surface scattering and phonon scattering should be controlled even in atomic scale roughened samples.

4.
Molecules ; 23(12)2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30513779

RESUMO

The nature of precursor phenomena in the paraelectric phase of ferroelectrics is one of the main questions to be resolved from a fundamental point of view. Barium titanate (BaTiO3) is one of the most representative perovskite-structured ferroelectrics intensively studied until now. The pretransitional behavior of BaTiO3 single crystal grown using a solid-state crystal growth (SSCG) method was investigated for the first time and compared to previous results. There is no melting process in the SSCG method, thus the crystal grown using a SSCG method have inherent higher levels of impurity and defect concentrations, which is a good candidate for investigating the effect of crystal quality on the precursor phenomena. The acoustic, dielectric, and piezoelectric properties, as well as birefringence, of the SSCG-grown BaTiO3 were examined over a wide temperature range. Especially, the acoustic phonon behavior was investigated in terms of Brillouin spectroscopy, which is a complementary technique to Raman spectroscopy. The obtained precursor anomalies of the SSCG-grown BaTiO3 in the cubic phase were similar to those of other single crystals, in particular, of high-quality single crystal grown by top-seeded solution growth method. These results clearly indicate that the observed precursor phenomena are common and intrinsic effect irrespective of the crystal quality.


Assuntos
Compostos de Bário/química , Bário/química , Birrefringência , Difusão Dinâmica da Luz , Cristalização , Análise Espectral , Temperatura
5.
Angew Chem Int Ed Engl ; 55(11): 3714-8, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26849683

RESUMO

Wet chemical synthesis of covalent III-V colloidal quantum dots (CQDs) has been challenging because of uncontrolled surfaces and a poor understanding of surface-ligand interactions. We report a simple acid-free approach to synthesize highly crystalline indium phosphide CQDs in the unique tetrahedral shape by using tris(dimethylamino) phosphine and indium trichloride as the phosphorus and indium precursors, dissolved in oleylamine. Our chemical analyses indicate that both the oleylamine and chloride ligands participate in the stabilization of tetrahedral-shaped InP CQDs covered with cation-rich (111) facets. Based on density functional theory calculations, we propose that fractional dangling electrons of the In-rich (111) surface could be completely passivated by three halide and one primary amine ligands per the (2×2) surface unit, satisfying the 8-electron rule. This halide-amine co-passivation strategy will benefit the synthesis of stable III-V CQDs with controlled surfaces.

6.
J Am Chem Soc ; 136(25): 8883-6, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24919086

RESUMO

The fast degradation of lead selenide (PbSe) nanocrystal quantum dots (NQDs) in ambient conditions impedes widespread deployment of the highly excitonic, thus versatile, colloidal NQDs. Here we report a simple in situ post-synthetic halide salt treatment that results in size-independent air stability of PbSe NQDs without significantly altering their optoelectronic characteristics. From TEM, NMR, and XPS results and DFT calculations, we propose that the unprecedented size-independent air stability of the PbSe NQDs can be attributed to the successful passivation of under-coordinated PbSe(100) facets with atomically thin PbX2 (X = Cl, Br, I) adlayers. Conductive films made of halide-treated ultrastable PbSe NQDs exhibit markedly improved air stability and behave as an n-type channel in a field-effect transistor. Our simple in situ wet-chemical passivation scheme will enable broader utilization of PbSe NQDs in ambient conditions in many optoelectronic applications.

7.
Materials (Basel) ; 17(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38930231

RESUMO

Hybrid organic-inorganic lead halide perovskites (LHPs) have emerged as a highly significant class of materials due to their tunable and adaptable properties, which make them suitable for a wide range of applications. One of the strategies for tuning and optimizing LHP-based devices is the substitution of cations and/or anions in LHPs. The impact of Cs substitution at the A site on the structural, vibrational, and elastic properties of MAxCs1-xPbCl3-mixed single crystals was investigated using X-ray diffraction (XRD) and Raman and Brillouin light scattering techniques. The XRD results confirmed the successful synthesis of impurity-free single crystals, which exhibited a phase coexistence of dominant cubic and minor orthorhombic symmetries. Raman spectroscopy was used to analyze the vibrational modes associated with the PbCl6 octahedra and the A-site cation movements, thereby revealing the influence of cesium incorporation on the lattice dynamics. Brillouin spectroscopy was employed to investigate the changes in elastic properties resulting from the Cs substitution. The incorporation of Cs cations induced lattice distortions within the inorganic framework, disrupting the hydrogen bonding between the MA cations and PbCl6 octahedra, which in turn affected the elastic constants and the sound velocities. The substitution of the MA cations with smaller Cs cations resulted in a stiffer lattice structure, with the two elastic constants increasing up to a Cs content of 30%. The current findings facilitate a fundamental understanding of mixed lead chloride perovskite materials, providing valuable insights into their structural and vibrational properties.

8.
J Am Chem Soc ; 135(14): 5278-81, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23496143

RESUMO

Ambient stability of colloidal nanocrystal quantum dots (QDs) is imperative for low-cost, high-efficiency QD photovoltaics. We synthesized air-stable, ultrasmall PbS QDs with diameter (D) down to 1.5 nm, and found an abrupt transition at D ≈ 4 nm in the air stability as the QD size was varied from 1.5 to 7.5 nm. X-ray photoemission spectroscopy measurements and density functional theory calculations reveal that the stability transition is closely associated with the shape transition of oleate-capped QDs from octahedron to cuboctahedron, driven by steric hindrance and thus size-dependent surface energy of oleate-passivated Pb-rich QD facets. This microscopic understanding of the surface chemistry on ultrasmall QDs, up to a few nanometers, should be very useful for precisely and accurately controlling physicochemical properties of colloidal QDs such as doping polarity, carrier mobility, air stability, and hot-carrier dynamics for solar cell applications.


Assuntos
Chumbo/química , Pontos Quânticos , Sulfetos/química , Tamanho da Partícula , Sulfetos/síntese química , Propriedades de Superfície
9.
Macromol Rapid Commun ; 34(6): 533-8, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23355374

RESUMO

Catalytic natures of organometallic catalysts are modulated by coordinating organic ligands with proper steric and electronic properties to metal centers. Carbon-based nanomaterials such as graphene nanoplatelets are used with and without N-doping and multiwalled carbon nanotube as a ligand for ethylene polymerizations. Zirconocenes or titanocenes are immobilized on such nanomaterials. Polyethylenes (PEs) produced by such hybrids show a great increase in molecular weight relative to those produced by free catalysts. Specially, ultra-high-molecular-weight PEs are produced from the polymerizations at low temperature using the hybrid with N-doped graphene nanoplatelets. This result shows that such nanomaterials act a crucial role to tune the catalytic natures of metallocenes.


Assuntos
Grafite/química , Nanotubos de Carbono/química , Compostos Organometálicos/química , Polietilenos/síntese química , Zircônio/química , Catálise , Estrutura Molecular , Espectroscopia Fotoeletrônica
10.
Nano Lett ; 12(12): 6043-8, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22720882

RESUMO

Atomically thin graphene is an ideal model system for studying nanoscale friction due to its intrinsic two-dimensional (2D) anisotropy. Furthermore, modulating its tribological properties could be an important milestone for graphene-based micro- and nanomechanical devices. Here, we report unexpectedly enhanced nanoscale friction on chemically modified graphene and a relevant theoretical analysis associated with flexural phonons. Ultrahigh vacuum friction force microscopy measurements show that nanoscale friction on the graphene surface increases by a factor of 6 after fluorination of the surface, while the adhesion force is slightly reduced. Density functional theory calculations show that the out-of-plane bending stiffness of graphene increases up to 4-fold after fluorination. Thus, the less compliant F-graphene exhibits more friction. This indicates that the mechanics of tip-to-graphene nanoscale friction would be characteristically different from that of conventional solid-on-solid contact and would be dominated by the out-of-plane bending stiffness of the chemically modified graphene. We propose that damping via flexural phonons could be a main source for frictional energy dissipation in 2D systems such as graphene.

11.
Materials (Basel) ; 16(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37297119

RESUMO

The relationship between halogen content and the elastic/vibrational properties of MAPbBr3-xClx mixed crystals (x = 1.5, 2, 2.5, and 3) with MA = CH3NH3+ has been studied using Brillouin and Raman spectroscopy at room temperature. The longitudinal and transverse sound velocities, the absorption coefficients and the two elastic constants C11 and C44 could be obtained and compared for the four mixed-halide perovskites. In particular, the elastic constants of the mixed crystals have been determined for the first time. A quasi-linear increase in the sound velocity and the elastic constant C11 with increasing chlorine content was observed for the longitudinal acoustic waves. C44 was insensitive to the Cl content and very low, indicating a low elasticity to shear stress in mixed perovskites regardless of the Cl content. The acoustic absorption of the LA mode increased with increasing heterogeneity in the mixed system, especially for the intermediate composition where the Br and Cl ratio was 1:1. In addition, a significant decrease in the Raman-mode frequency of the low-frequency lattice modes and the rotational and torsional modes of the MA cations was observed with decreasing Cl content. It clearly showed that the changes in the elastic properties as the halide composition changes were correlated with the lattice vibrations. The present findings may facilitate a deeper understanding of the complex interplay between halogen substitution, vibrational spectra and elastic properties, and may also pave the way for optimizing the operation of perovskite-based photovoltaic and optoelectronic devices by tailoring their chemical composition.

12.
Nanomaterials (Basel) ; 13(18)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764589

RESUMO

Red color conversion materials have often been used in conventional white LEDs (light-emitting diodes) to enhance the insufficient deep-red component and thus improve the color-rendering property. Quantum dots (QDs) are one of the candidates for this due to their flexibility in controlling the emission wavelength, which is attributed to the quantum confinement effect. Two types of remote QD components, i.e., QD films and QD caps, were prepared and applied to conventional white LED illumination to improve the color-rendering properties. Thanks to the red component near 630 nm caused by the QD components, the color rendering indices (CRIs) of both Ra and R9 could be increased to over 95. It was found that both the diffusing nature of the reflector and the light recycling process in the vertical cavity between the bottom reflector and the top optical films play important roles in improving the color conversion efficiency of remote QD components. The present study showed that the proper application of remote QDs combined with a suitable optical cavity can control the correlated color temperature of the illumination over a wide range, thus realizing different color appearances of white LED illumination. In addition, a high CRI of over 95 could be achieved due to the sufficient excitation from fewer QDs, due to the strong optical cavity effect.

13.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431635

RESUMO

Raman spectroscopy was applied to MAPbCl3 single crystals in a wide frequency range from 10 to 3500 cm-1 over a broad temperature range from -196 °C to 200 °C including both two structural phase transitions and a thermal degradation range. Low-frequency lattice modes of MAPbCl3 were revealed for the first time, which showed discontinuous anomalies along with the change in the number of Raman modes at the transition points of -114 °C and -110 °C. Several Raman modes related to the C-N stretching and MA rocking modes in addition to the lattice modes displayed temperature dependences similar to those of MAPbBr3 in both Raman shifts and half widths, indicating that the MA cation arrangement and H-halide bond interactions behave similarly in both systems during the phase transition. The substantial increase in the half widths of nearly all Raman modes especially suggests that the dynamic disorder caused by the free rotational motions of MA cations induces significant anharmonicity in the lattice and thus, reduces the phonon lifetimes. High-temperature Raman and Brillouin scattering measurements showed that the spectral features changed drastically at ~200 °C where the thermal decomposition of MAPbCl3 into PbCl2 began. This result exhibits that combined Raman and Brillouin spectroscopic techniques can be a useful tool in monitoring temperature-induced or temporal changes in lead-based halide perovskite materials.

14.
Nanomaterials (Basel) ; 12(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014714

RESUMO

A remote-type white light-emitting diode (LED) consisting of a red quantum-dot (QD) film and a yellow phosphor plate was studied by both experiment and optical simulation. The sequence of the two color-conversion films had a substantial effect on the color-rendering properties of the vertically-stacked white LED, and the optimized configuration exhibited a high color rendering index of more than 90 thanks to the enhanced red component via the QD film. For the design of high-power white LED devices of a remote type, it was necessary to locate the color-conversion films below the diffuser plate to remove the substantial color dispersion depending on the viewing angle. The present study shows that high power and high color-rendering white LED devices can be realized in terms of two vertically-stacked color-conversion materials, which would provide long-term stability due to the remote design.

15.
Materials (Basel) ; 15(10)2022 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-35629720

RESUMO

Inelastic light scattering spectra of organic-inorganic halide perovskite MAPbCl3 single crystals were investigated by using Brillouin spectroscopy. Sound velocities and acoustic absorption coefficients of longitudinal and transverse acoustic modes propagating along the cubic [100] direction were determined in a wide temperature range. The sound velocities exhibited softening upon cooling in the cubic phase, which was accompanied by the increasing acoustic damping. The obtained relaxation time showed a critical slowing-down behavior, revealing the order-disorder nature of the phase transition, which is consistent with the growth of strong central peaks upon cooling toward the phase transition point. The temperature dependences of the two elastic constants C11 and C44 were obtained in the cubic phase for the first time. The comparison of C11 and C44 with those of other halide perovskites showed that C11 of MAPbCl3 is larger and C44 is slightly smaller compared to the values of MAPbBr3 and MAPbI3. It suggests that MAPbCl3 has a more compact structure (smaller lattice constant) along with stronger binding forces, causing larger C11 and bulk modulus in this compound, and that the shear rigidity is exceedingly small similar to other halide perovskites. The reported elastic constants in this study may serve as a testbed for theoretical and calculational approaches for MAPbCl3.

16.
Materials (Basel) ; 16(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614685

RESUMO

In this paper, the behavior of quasielastic light scattering (QELS) in a PbMg1/3Nb2/3O3 (PMN) crystal under broadband Brillouin light scattering in a temperature range from 750 K to 80 K was studied. It was shown that QELS consists of two components: narrow (0.9 GHz to 11 GHz) and wide (80 GHz to 600 GHz). The dependencies of the intensity, I, of these components on the frequency, ν, are well described by the power law I ~ eνα, with different α, and are determined by the distribution of the relaxation times. The analysis of the Brillouin spectra showed that the behavior of the relaxation time of both the components of QELS with temperature change is well described by the Arrhenius law. Additionally, in the vicinity of the intermediate temperature T* ≈ 380 K, a critical relaxation time behavior for the narrow component of QELS was detected. In the vicinity of the same temperature, a maximum in the integral intensity of both the components of QELS was observed, which is adjacent to another maximum in the region of the Vogel-Fulcher temperature TVF ≈ 250 K corresponding to the transformation of the crystal to a nonergodic state.

17.
Materials (Basel) ; 15(12)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35744136

RESUMO

Lead zirconate PbZrO3 has been the subject of research interest for several dozen years. Recently, even its antiferroelectric properties have started to be questioned, and many researchers still deal with the so-called intermediate phase below Curie temperature (TC), whose existence is not fully understood. It turns out that PbZrO3 doped with Nb exhibits below TC phases with complex domain structures. One of them undergoes self-organization taking place at a constant temperature, and transforms, after several minutes, into a lower phase. This isothermal transition was investigated through dielectric, pyroelectric current and Raman scattering measurements. Discontinuities accompanied it in the permittivity and pyroelectric current. The obtained Raman spectra proved that those discontinuities are strictly linked with the isothermal transition between two intermediate phases. The ordering process in lead sublattice stimulated by thermal fluctuations is discussed as a driving force for this peculiar phenomenon.

18.
Nanomaterials (Basel) ; 12(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35407215

RESUMO

A new type of remote red quantum-dot (QD) component was designed and fabricated to improve the color-rendering properties of conventional white LED (light-emitting diode) lightings. Based on an optical simulation, the rectangular cavity-type QD cap was designed with an opening window on the top surface. Red QD caps were fabricated using a typical injection molding technique and CdSe/ZnS QDs with a core/shell structure whose average size was ~6 nm. Red QD caps were applied to conventional 6-inch, 15-W white LED downlighting consisting of 72 LEDs arrayed concentrically. The red QD caps placed over white LEDs enhanced the red components in the long-wavelength range resulting in the increase of the color rendering index (CRI) from 82.9 to 94.5. The correlated color temperature was tuned easily in a wide range by adopting various configurations consisting of different QD caps. The spatial and angular homogeneities were secured on the emitting area because QD caps placed over the white LEDs did not exhibit any substantial optical path length difference. The present study demonstrates that adopting QD caps in conventional LED lightings provides a flexible and efficient method to realize a high color-rendering property and to adjust correlated color temperature appropriately for a specific application.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 266: 120414, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34619511

RESUMO

We investigated the vibrational density of states of sodium carboxymethyl starch (CM-starch) by terahertz (THz) time-domain spectroscopy. The CM-starch showed a broad peak at ∼3 THz. The structure of the peak was similar to those corresponding to glucose-based polymer glasses possessing hydrogen bonds. The boson peak (BP) appeared at 1.16 THz at the lowest temperature and disappeared because of the existence of excess wing at higher temperatures. However, based on our novel BP frequency determination method using the inflection point of the extinction coefficient, the BP frequency showed almost no dependence on temperature. Further, the chain length dependence of the BP frequency of the glucose-based glasses showed that the BP frequency of the polymer glass was slightly lower than that of the monomer glass. The power law behaviour of the absorption coefficient suggested the existence of fractons, and the fractal dimension was estimated to be 2.33.


Assuntos
Espectroscopia Terahertz , Ligação de Hidrogênio , Amido/análogos & derivados , Vibração
20.
Adv Mater ; 34(42): e2205825, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36069028

RESUMO

Interaction between dipoles often emerges intriguing physical phenomena, such as exchange bias in the magnetic heterostructures and magnetoelectric effect in multiferroics, which lead to advances in multifunctional heterostructures. However, the defect-dipole tends to be considered the undesired to deteriorate the electronic functionality. Here, deterministic switching between the ferroelectric and the pinched states by exploiting a new substrate of cubic perovskite, BaZrO3 is reported, which boosts the square-tensile-strain to BaTiO3 and promotes four-variants in-plane spontaneous polarization with oxygen vacancy creation. First-principles calculations propose a complex of an oxygen vacancy and two Ti3+ ions coins a charge-neutral defect-dipole. Cooperative control of the defect-dipole and the spontaneous polarization reveals ternary in-plane polar states characterized by biased/pinched hysteresis loops. Furthermore, it is experimentally demonstrated that three electrically controlled polar-ordering states lead to switchable and nonvolatile dielectric states for application of nondestructive electro-dielectric memory. This discovery opens a new route to develop functional materials via manipulating defect-dipoles and offers a novel platform to advance heteroepitaxy beyond the prevalent perovskite substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA