Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
J Virol ; 97(9): e0046323, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37668368

RESUMO

Plant viruses induce various disease symptoms that substantially impact agriculture, but the underlying mechanisms of viral disease in plants are poorly understood. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Here, we show that a gene fragment of gentian Kobu-sho-associated virus, which is designated as Kobu-sho-inducing factor (KOBU), induces gall formation accompanied by ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. Transgenic gentian expressing KOBU exhibited tumorous symptoms, confirming the gall-forming activity of KOBU. Surprisingly, KOBU expression can also induce differentiation of an additional leaf-like tissue on the abaxial side of veins in normal N. benthamiana and gentian leaves. Transcriptome analysis with Arabidopsis thaliana expressing KOBU revealed that KOBU activates signaling pathways that regulate xylem development. KOBU protein forms granules and plate-like structures and co-localizes with mRNA splicing factors within the nucleus. Our findings suggest that KOBU is a novel pleiotropic virulence factor that stimulates vascular and leaf development. IMPORTANCE While various mechanisms determine disease symptoms in plants depending on virus-host combinations, the details of how plant viruses induce symptoms remain largely unknown in most plant species. Kobu-sho is a disease in gentian that shows gall formation with ectopic development of lignified cells and vascular tissues such as xylem. Our findings demonstrate that a gene fragment of gentian Kobu-sho-associated virus (GKaV), which is designated as Kobu-sho-inducing factor, induces the gall formation accompanied by the ectopic development of lignified cells and xylem-like tissue in Nicotiana benthamiana. The molecular mechanism by which gentian Kobu-sho-associated virus induces the Kobu-sho symptoms will provide new insight into not only plant-virus interactions but also the regulatory mechanisms underlying vascular and leaf development.


Assuntos
Gentiana , Nicotiana , Tumores de Planta , Vírus de Plantas , Fatores de Virulência , Xilema , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/virologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Gentiana/virologia , Vírus de Plantas/genética , Vírus de Plantas/patogenicidade , Nicotiana/metabolismo , Nicotiana/virologia , Xilema/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Folhas de Planta , Tumores de Planta/virologia , Transdução de Sinais , Fatores de Processamento de RNA
2.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216118

RESUMO

To explore a possible recessive selective marker for future DNA-free genome editing by direct delivery of a CRISPR/Cas9-single guide RNA (sgRNA) ribonucleoprotein complex, we knocked out homologs of the ArabidopsisMulti-Antibiotic Resistance 1 (MAR1)/RTS3 gene, mutations of which confer aminoglycoside resistance, in tobacco plants by an efficient Agrobacterium-mediated gene transfer. A Cas9 gene was introduced into Nicotiana tabacum and Nicotiana sylvestris together with an sgRNA gene for one of three different target sequences designed to perfectly match sequences in both S- and T-genome copies of N. tabacumMAR1 homologs (NtMAR1hs). All three sgRNAs directed the introduction of InDels into NtMAR1hs, as demonstrated by CAPS and amplicon sequencing analyses, albeit with varying efficiency. Leaves of regenerated transformant shoots were evaluated for aminoglycoside resistance on shoot-induction media containing different aminoglycoside antibiotics. All transformants tested were as sensitive to those antibiotics as non-transformed control plants, regardless of the mutation rates in NtMAR1hs. The NtMAR1hs-knockout seedlings of the T1 generation showed limited aminoglycoside resistance but failed to form shoots when cultured on shoot-induction media containing kanamycin. The results suggest that, like Arabidopsis MAR1, NtMAR1hs have a role in plants' sensitivity to aminoglycoside antibiotics, and that tobacco has some additional functional homologs.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Arabidopsis/genética , Resistência Microbiana a Medicamentos/genética , Nicotiana/genética , Agrobacterium/efeitos dos fármacos , Agrobacterium/genética , Arabidopsis/microbiologia , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Genoma de Planta/genética , Mutação/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas/genética , RNA Guia de Cinetoplastídeos/genética , Nicotiana/microbiologia
3.
Plant Cell Physiol ; 62(11): 1676-1686, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34347875

RESUMO

The CRISPR/Cas9 system is now commonly employed for genome editing in various plants such as Arabidopsis, rice and tobacco. In general, in genome editing of the Arabidopsis genome, the SpCas9 and guide RNA genes are introduced into the genome by the floral dip method. Mutations induced in the target sequence by SpCas9 are confirmed after selecting transformants by screening the T1 seed population. The advantage of this method is that genome-edited plants can be isolated easily. However, mutation efficiency in Arabidopsis using SpCas9 is not as high as that achieved in rice and tobacco, which are subjected to a tissue culture step. In this study, we compared four promoters and found that the parsley UBIQITIN promoter is highly active in Arabidopsis meristem tissue. Furthermore, we examined whether a simple heat treatment could improve mutation efficiency in Arabidopsis. Just one heat treatment at 37°C for 24 h increased the mutation efficiency at all four target sites from 3 to 42%, 43 to 62%, 54 to 75% and 89 to 91%, without detectable off-target mutations. We recommend heat treatment of plate-grown plants at 37°C for 24 h as a simple method to increase the efficiency of CRISPR/Cas9-mediated mutagenesis in Arabidopsis.


Assuntos
Arabidopsis/genética , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma de Planta , Temperatura Alta , Arabidopsis/metabolismo , Meristema/metabolismo , Mutação , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas
4.
Int J Mol Sci ; 22(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800043

RESUMO

Nicotinamide mononucleotide (NMN), a precursor of nicotinamide adenine dinucleotide (NAD), induces disease resistance to the Fusarium head blight fungus Fusarium graminearum in Arabidopsis and barley, but it is unknown at which stage of the infection it acts. Since the rate of haustorial formation of an obligate biotrophic barley powdery mildew fungus Blumeria graminis f. sp. hordei (Bgh) was significantly reduced in NMN-treated coleoptile epidermal cells, the possibility that NMN induces resistance to the biotrophic stage of F. graminearum was investigated. The results show that NMN treatment caused the wandering of hyphal growth and suppressed the formation of appressoria-like structures. Furthermore, we developed an experimental system to monitor the early stage of infection in real-time and analyzed the infection behavior. We observed that the hyphae elongated windingly by NMN treatment. These results suggest that NMN potentiates resistance to the biotrophic invasion of F. graminearum as well as Bgh.


Assuntos
Ascomicetos/patogenicidade , Fusarium/patogenicidade , Hordeum/microbiologia , Mononucleotídeo de Nicotinamida/farmacologia , Doenças das Plantas/microbiologia , Resistência à Doença , Fusarium/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Hordeum/efeitos dos fármacos , Hordeum/genética , Interações Hospedeiro-Patógeno/fisiologia , Hifas/efeitos dos fármacos , Hifas/patogenicidade , Plantas Geneticamente Modificadas
5.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987929

RESUMO

In the present study, we have shown the transcriptional changes in a chlorosis model transgenic tobacco plant, i-amiCHLI, in which an artificial micro RNA is expressed in a chemically inducible manner to silence the expression of CHLI genes encoding a subunit of a chlorophyll biosynthetic enzyme. Comparison to the inducer-treated and untreated control non-transformants and untreated i-amiCHLI revealed that 3568 and 3582 genes were up- and down-regulated, respectively, in the inducer-treated i-amiCHLI plants. Gene Ontology enrichment analysis of these differentially expressed genes indicated the upregulation of the genes related to innate immune responses, and cell death pathways, and the downregulation of genes for photosynthesis, plastid organization, and primary and secondary metabolic pathways in the inducer-treated i-amiCHLI plants. The cell death in the chlorotic tissues with a preceding H2O2 production was observed in the inducer-treated i-amiCHLI plants, confirming the activation of the immune response. The involvement of activated innate immune response in the chlorosis development was supported by the comparative expression analysis between the two transgenic chlorosis model systems, i-amiCHLI and i-hpHSP90C, in which nuclear genes encoding different chloroplast proteins were similarly silenced.


Assuntos
Nicotiana , Fotossíntese/genética , Necrose e Clorose das Plantas/genética , Proteínas de Plantas/genética , Transcriptoma , Clorofila/biossíntese , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Plantas Geneticamente Modificadas/enzimologia , Nicotiana/enzimologia , Nicotiana/genética
7.
Int J Mol Sci ; 21(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545608

RESUMO

RNA-seq analysis of a transgenic tobacco plant, i-hpHSP90C, in which chloroplast HSP90C genes can be silenced in an artificially inducible manner resulting in the development of chlorosis, revealed the up- and downregulation of 2746 and 3490 genes, respectively. Gene ontology analysis of these differentially expressed genes indicated the upregulation of ROS-responsive genes; the activation of the innate immunity and cell death pathways; and the downregulation of genes involved in photosynthesis, plastid organization, and cell cycle. Cell death was confirmed by trypan blue staining and electrolyte leakage assay, and the H2O2 production was confirmed by diaminobenzidine staining. The results collectively suggest that the reduced levels of HSP90C chaperone lead the plant to develop chlorosis primarily through the global downregulation of chloroplast- and photosynthesis-related genes and additionally through the light-dependent production of ROS, followed by the activation of immune responses, including cell death.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Proteínas de Choque Térmico HSP90/genética , Nicotiana/genética , Necrose e Clorose das Plantas/genética , Cloroplastos/genética , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Inativação Gênica , Peróxido de Hidrogênio/metabolismo , Fotossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Análise de Sequência de RNA , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
8.
Arch Virol ; 163(5): 1357-1362, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29411138

RESUMO

The TOM1/TOM3 genes from Arabidopsis are involved in the replication of tobamoviruses. Tomato homologs of these genes, LeTH1, LeTH2 and LeTH3, are known. In this study, we examined transgenic tomato lines where inverted repeats of either LeTH1, LeTH2 or LeTH3 were introduced by Agrobacterium. Endogenous mRNA expression for each gene was detected in non-transgenic control plants, whereas a very low level of each of the three genes was found in the corresponding line. Small interfering RNA was detected in the transgenic lines. Each silenced line showed similar levels of tobamovirus resistance, indicating that each gene is similarly involved in virus replication.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Membrana/genética , Proteínas de Plantas/genética , Interferência de RNA , Solanum lycopersicum/virologia , Tobamovirus/genética , Arabidopsis/genética , Resistência à Doença/genética , Sequências Repetidas Invertidas , Solanum lycopersicum/genética , Doenças das Plantas/virologia , Plantas Geneticamente Modificadas/virologia , RNA Interferente Pequeno , Tobamovirus/fisiologia , Proteínas Virais/genética , Replicação Viral
9.
Plant Physiol ; 171(1): 658-74, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26951433

RESUMO

One branch of plant immunity is mediated through nucleotide-binding/Leu-rich repeat (NB-LRR) family proteins that recognize specific effectors encoded by pathogens. Members of the I2-like family constitute a well-conserved subgroup of NB-LRRs from Solanaceae possessing a coiled-coil (CC) domain at their N termini. We show here that the CC domains of several I2-like proteins are able to induce a hypersensitive response (HR), a form of programmed cell death associated with disease resistance. Using yeast two-hybrid screens, we identified the chloroplastic protein Thylakoid Formation1 (THF1) as an interacting partner for several I2-like CC domains. Co-immunoprecipitations and bimolecular fluorescence complementation assays confirmed that THF1 and I2-like CC domains interact in planta and that these interactions take place in the cytosol. Several HR-inducing I2-like CC domains have a negative effect on the accumulation of THF1, suggesting that the latter is destabilized by active CC domains. To confirm this model, we investigated N', which recognizes the coat protein of most Tobamoviruses, as a prototypical member of the I2-like family. Transient expression and gene silencing data indicated that THF1 functions as a negative regulator of cell death and that activation of full-length N' results in the destabilization of THF1. Consistent with the known function of THF1 in maintaining chloroplast homeostasis, we show that the HR induced by N' is light-dependent. Together, our results define, to our knowledge, novel molecular mechanisms linking light and chloroplasts to the induction of cell death by a subgroup of NB-LRR proteins.


Assuntos
Proteínas do Capsídeo/metabolismo , Cloroplastos/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Morte Celular , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Células Vegetais , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos , Nicotiana/citologia , Nicotiana/virologia , Tobamovirus , Técnicas do Sistema de Duplo-Híbrido
10.
Plant Biotechnol J ; 14(2): 783-90, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26132723

RESUMO

We investigated graft transmission of high-temperature tolerance in tomato scions to nontransgenic scions from transgenic rootstocks, where the fatty acid desaturase gene (LeFAD7) was RNA-silenced. Tomato was transformed with a plasmid carrying an inverted repeat of LeFAD7 by Agrobacterium. Several transgenic lines showed the lower amounts of LeFAD7 RNA and unsaturated fatty acids, while nontransgenic control did not, and siRNA was detected in the transgenic lines, but not in control. These lines grew under conditions of high temperature, while nontransgenic control did not. Further, the nontransgenic plants were grafted onto the silenced transgenic plants. The scions showed less of the target gene RNA, and siRNA was detected. Under high-temperature conditions, these grafted plants grew, while control grafted plants did not. Thus, it was shown that high-temperature tolerance was conferred in the nontransgenic scions after grafting onto the silenced rootstocks.


Assuntos
Ácidos Graxos Dessaturases/genética , Genes de Plantas , Temperatura Alta , Interferência de RNA , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Técnicas de Cultura de Tecidos/métodos , Adaptação Fisiológica/genética , Sequência de Bases , Fases de Leitura Aberta/genética , Filogenia , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Transformação Genética
11.
Virus Genes ; 52(6): 828-834, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27459886

RESUMO

The complete nucleotide sequences of Beet pseudoyellows virus (BPYV)-MI (cucumber isolate; Matsuyama, Idai) genomic RNAs 1 and 2 were determined and compared with the previously sequenced Japanese cucumber strain (BPYV-JC) and a strawberry strain (BPYV-S). The RNA 2 of BPYV-MI showed 99 % nucleotide sequence identity with both BPYV-JC and -S having highly conserved eight ORFs. In contrast, the RNA1 of BPYV-MI showed sequence identities of 98 and 86 % with BPYV-JC and -S, respectively. Phylogenetic analysis of RNA-dependent RNA polymerase (RdRp) coding sequences from three fully sequenced BPYV strains and five partially sequenced cucurbit-infecting BPYV strains from Japan and South Africa has shown that cucurbit-infecting strains are closer to each other than to BPYV-S. In addition, the strawberry strain BPYV-S has an ORF2 in the downstream of RdRp gene in RNA1, but all the cucumber strains, BPYV-JC, -MI, and those from South Africa, lacked the ORF2 of RNA1, highlighting the difference between common BPYV cucumber strains and a unique strawberry strain.


Assuntos
Crinivirus/classificação , Crinivirus/genética , Cucumis sativus/virologia , Fragaria/virologia , Genoma Viral , Genômica , Interações Hospedeiro-Patógeno , Fases de Leitura Aberta , Filogenia , Doenças das Plantas/virologia , Análise de Sequência de RNA
12.
EMBO J ; 30(7): 1343-56, 2011 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-21343906

RESUMO

The protein kinase TOR (target-of-rapamycin) upregulates translation initiation in eukaryotes, but initiation restart after long ORF translation is restricted by largely unknown pathways. The plant viral reinitiation factor transactivator-viroplasmin (TAV) exceptionally promotes reinitiation through a mechanism involving retention on 80S and reuse of eIF3 and the host factor reinitiation-supporting protein (RISP) to regenerate reinitiation-competent ribosomal complexes. Here, we show that TAV function in reinitiation depends on physical association with TOR, with TAV-TOR binding being critical for both translation reinitiation and viral fitness. Consistently, TOR-deficient plants are resistant to viral infection. TAV triggers TOR hyperactivation and S6K1 phosphorylation in planta. When activated, TOR binds polyribosomes concomitantly with polysomal accumulation of eIF3 and RISP--a novel and specific target of TOR/S6K1--in a TAV-dependent manner, with RISP being phosphorylated. TAV mutants defective in TOR binding fail to recruit TOR, thereby abolishing RISP phosphorylation in polysomes and reinitiation. Thus, activation of reinitiation after long ORF translation is more complex than previously appreciated, with TOR/S6K1 upregulation being the key event in the formation of reinitiation-competent ribosomal complexes.


Assuntos
Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Transativadores/metabolismo , Proteínas Virais/metabolismo , Arabidopsis , Proteínas de Arabidopsis , Fator de Iniciação 3 em Eucariotos/metabolismo , Imunoprecipitação , Fosfatidilinositol 3-Quinases , Ligação Proteica , Mapeamento de Interação de Proteínas , Ribossomos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
13.
Plant Biotechnol J ; 13(1): 85-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25168932

RESUMO

Heme activator protein (HAP), also known as nuclear factor Y or CCAAT binding factor (HAP/NF-Y/CBF), has important functions in regulating plant growth, development and stress responses. The expression of rice HAP gene (OsHAP2E) was induced by probenazole (PBZ), a chemical inducer of disease resistance. To characterize the gene, the chimeric gene (OsHAP2E::GUS) engineered to carry the structural gene encoding ß-glucuronidase (GUS) driven by the promoter from OsHAP2E was introduced into rice. The transgenic lines of OsHAP2Ein::GUS with the intron showed high GUS activity in the wounds and surrounding tissues. When treated by salicylic acid (SA), isonicotinic acid (INA), abscisic acid (ABA) and hydrogen peroxide (H2 O2 ), the lines showed GUS activity exclusively in vascular tissues and mesophyll cells. This activity was enhanced after inoculation with Magnaporthe oryzae or Xanthomonas oryzae pv. oryzae. The OsHAP2E expression level was also induced after inoculation of rice with M. oryzae and X. oryzae pv. oryzae and after treatment with SA, INA, ABA and H2 O2, respectively. We further produced transgenic rice overexpressing OsHAP2E. These lines conferred resistance to M. oryzae or X. oryzae pv. oryzae and to salinity and drought. Furthermore, they showed a higher photosynthetic rate and an increased number of tillers. Microarray analysis showed up-regulation of defence-related genes. These results suggest that this gene could contribute to conferring biotic and abiotic resistances and increasing photosynthesis and tiller numbers.


Assuntos
Resistência à Doença/genética , Secas , Oryza/anatomia & histologia , Oryza/genética , Fotossíntese , Doenças das Plantas/genética , Proteínas de Plantas/genética , Salinidade , Resistência à Doença/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glucuronidase/metabolismo , Magnaporthe/fisiologia , Dados de Sequência Molecular , Oryza/efeitos dos fármacos , Oryza/microbiologia , Pressão Osmótica/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiazóis/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Xanthomonas/fisiologia
14.
Microbiol Resour Announc ; 13(1): e0094723, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38112474

RESUMO

Pseudomonas syringae pv. actinidiae is a pathogen of kiwifruit canker. Ep4, a bacteriophage lysing the pathogenic bacteria, was isolated from an affected plant. Sequencing and annotation have revealed 44,614-bp genome with 52 predicted open reading frames. Ep4 is closest to Pseudomonas phage YMC11/06/C171_PPU_BP, albeit with low homology.

15.
EMBO J ; 28(20): 3171-84, 2009 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-19745810

RESUMO

The plant viral re-initiation factor transactivator viroplasmin (TAV) activates translation of polycistronic mRNA by a re-initiation mechanism involving translation initiation factor 3 (eIF3) and the 60S ribosomal subunit (60S). QJ;Here, we report a new plant factor-re-initiation supporting protein (RISP)-that enhances TAV function in re-initiation. RISP interacts physically with TAV in vitro and in vivo. Mutants defective in interaction are less active, or inactive, in transactivation and viral amplification. RISP alone can serve as a scaffold protein, which is able to interact with eIF3 subunits a/c and 60S, apparently through the C-terminus of ribosomal protein L24. RISP pre-bound to eIF3 binds 40S, suggesting that RISP enters the translational machinery at the 43S formation step. RISP, TAV and 60S co-localize in epidermal cells of infected plants, and eIF3-TAV-RISP-L24 complex formation can be shown in vitro. These results suggest that RISP and TAV bridge interactions between eIF3-bound 40S and L24 of 60S after translation termination to ensure 60S recruitment during repetitive initiation events on polycistronic mRNA; RISP can thus be considered as a new component of the cell translation machinery.


Assuntos
Proteínas de Arabidopsis/metabolismo , Caulimovirus/metabolismo , Fator de Iniciação 3 em Eucariotos/metabolismo , Regulação da Expressão Gênica de Plantas , Biossíntese de Proteínas/fisiologia , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Proteínas Virais/metabolismo , Proteínas de Arabidopsis/genética , Caulimovirus/genética , Caulimovirus/fisiologia , Modelos Biológicos , Reação em Cadeia da Polimerase , Polirribossomos/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , Biossíntese de Proteínas/genética , Subunidades Ribossômicas Menores de Eucariotos/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genética
16.
J Gen Virol ; 94(Pt 10): 2360-2365, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23907397

RESUMO

Gentian Kobu-sho-associated virus (GKaV) is a recently discovered novel virus from Kobu-sho (a hyperplastic or tumorous disorder)-affected Japanese gentians. To obtain insight into GKaV transmission and pathogenesis, the genetic diversity of the virus in the putative helicase and RNA-dependent RNA polymerase coding regions was studied. The extent of GKaV sequence diversity within single host plants differed within samples and between viral genomic regions. Phylogenetic analysis of 30 Kobu-sho-affected samples from different production areas and host cultivars revealed that GKaV populations have diverged as they became prevalent in different geographical regions. The diversification of GKaV was shown to be driven by geographical isolation rather than host adaptation; however, no geographical patterns were found. Therefore, it was not feasible to trace the pathway of GKaV spread.


Assuntos
Variação Genética , Gentiana/virologia , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/isolamento & purificação , Japão , Dados de Sequência Molecular , Filogenia , Vírus de Plantas/classificação , Prevalência
17.
J Gen Virol ; 94(Pt 12): 2777-2789, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24088344

RESUMO

Cauliflower mosaic virus (CaMV) encodes a 520 aa polypeptide, P6, which participates in several essential activities in the virus life cycle including suppressing RNA silencing and salicylic acid-responsive defence signalling. We infected Arabidopsis with CaMV mutants containing short in-frame deletions within the P6 ORF. A deletion in the distal end of domain D-I (the N-terminal 112 aa) of P6 did not affect virus replication but compromised symptom development and curtailed the ability to restore GFP fluorescence in a GFP-silenced transgenic Arabidopsis line. A deletion in the minimum transactivator domain was defective in virus replication but retained the capacity to suppress RNA silencing locally. Symptom expression in CaMV-infected plants is apparently linked to the ability to suppress RNA silencing. When transiently co-expressed with tomato bushy stunt virus P19, an elicitor of programmed cell death in Nicotiana tabacum, WT P6 suppressed the hypersensitive response, but three mutants, two with deletions within the distal end of domain D-I and one involving the N-terminal nuclear export signal (NES), were unable to do so. Deleting the N-terminal 20 aa also abolished the suppression of pathogen-associated molecular pattern-dependent PR1a expression following agroinfiltration. However, the two other deletions in domain D-I retained this activity, evidence that the mechanisms underlying these functions are not identical. The D-I domain of P6 when expressed alone failed to suppress either cell death or PR1a expression and is therefore necessary but not sufficient for all three defence suppression activities. Consequently, concerns about the biosafety of genetically modified crops carrying truncated ORFVI sequences appear unfounded.


Assuntos
Caulimovirus/patogenicidade , Estrutura Terciária de Proteína/genética , Interferência de RNA/efeitos dos fármacos , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transativadores/genética , Transativadores/farmacologia , Sequência de Aminoácidos , Arabidopsis/virologia , Caulimovirus/genética , Caulimovirus/metabolismo , Dados de Sequência Molecular , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Deleção de Sequência , Transativadores/química , Transativadores/metabolismo , Replicação Viral
18.
Arch Virol ; 158(7): 1549-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23404460

RESUMO

We determined the complete nucleotide sequence of a broad bean wilt virus 2 (BBWV-2) isolate from gentian in Japan. The full-length RNA1 and RNA2 sequences, excluding poly(A) tails, were 5955 and 3600 nucleotides long, respectively. Analysis indicated that, in contrast to other BBWV-2 isolates, the 5' end of both RNA1 and RNA2 starts with a GUU sequence. We successfully inoculated Nicotiana benthamiana with BBWV-2 by infiltrating a mixed suspension of two Agrobacterium tumefaciens clones carrying binary vectors with the full-length RNA1 and RNA2 sequences. This is the first report on the efficient, easy and high-throughput use of agroinoculation for generating BBWV-2 infections.


Assuntos
Agrobacterium tumefaciens/genética , Fabavirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos , Gentiana/virologia , Transformação Genética , Fabavirus/isolamento & purificação , Genoma Viral , Japão , Dados de Sequência Molecular , RNA Viral/genética , Análise de Sequência de DNA , Nicotiana/virologia
19.
Mol Plant Microbe Interact ; 25(9): 1219-29, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22690804

RESUMO

The N' gene of Nicotiana sylvestris and L genes of Capsicum plants confer the resistance response accompanying the hypersensitive response (HR) elicited by tobamovirus coat proteins (CP) but with different viral specificities. Here, we report the identification of the N' gene. We amplified and cloned an N' candidate using polymerase chain reaction primers designed from L gene sequences. The N' candidate gene was a single 4143 base pairs fragment encoding a coiled-coil nucleotide-binding leucine-rich repeat (LRR)-type resistance protein of 1,380 amino acids. The candidate gene induced the HR in response to the coexpression of tobamovirus CP with the identical specificity as reported for N'. Analysis of N'-containing and tobamovirus-susceptible N. tabacum accessions supported the hypothesis that the candidate is the N' gene itself. Chimera analysis between N' and L(3) revealed that their LRR domains determine the spectrum of their tobamovirus CP recognition. Deletion and mutation analyses of N' and L(3) revealed that the conserved sequences in their C-terminal regions have important roles but contribute differentially to the recognition of common avirulence proteins. The results collectively suggest that Nicotiana N' and Capsicum L genes, which most likely evolved from a common ancestor, differentiated in their recognition specificity through changes in the structural requirements for LRR function.


Assuntos
Capsicum/metabolismo , Nicotiana/metabolismo , Vírus de Plantas/imunologia , Proteínas Virais/imunologia , Motivos de Aminoácidos , Capsicum/genética , Capsicum/imunologia , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/virologia , Folhas de Planta , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Nicotiana/genética , Nicotiana/imunologia
20.
Plant Cell Rep ; 31(8): 1371-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22350408

RESUMO

Cucumber green mottle mosaic virus (CGMMV) is a major limiting factor in the production of melon plants worldwide. For effective control of this virus using the transgenic approach, the direct repeat of the movement protein gene of CGMMV was used for transforming melon plants by Agrobacterium tumefaciens. PCR and Southern blot analyses of T3 confirmed that they carried the transgene. Northern blot analysis with total RNA showed that transgene transcript RNA as well as siRNA was observed in all plants tested. Separate leaves or individual plants were inoculated with CGMMV and subjected to ELISA and RNA blot analysis using the coat protein gene probe of the virus. Compared to nontransgenic control, these plants were shown to have high virus resistance. Furthermore, cytosine of the transgene DNA in the plants was methylated. Thus, these results reveal that the transgenic lines were highly resistant to the virus through RNA silencing. Key message High virus resistance was obtained in transgenic melon plants with direct repeat of movement protein gene of Cucumber green mottle mosaic tobamovirus through RNA silencing.


Assuntos
Cucumovirus/genética , Cucurbitaceae/genética , Cucurbitaceae/virologia , Genes Virais/genética , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/genética , Sequências Repetitivas de Ácido Nucleico/genética , Northern Blotting , Southern Blotting , Metilação de DNA/genética , DNA de Plantas/metabolismo , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA