Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 122(4): 4420-4492, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34793134

RESUMO

Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.

2.
Angew Chem Int Ed Engl ; 63(28): e202400382, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38619863

RESUMO

Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g-1 and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur's mobility leads to battery degradation-an effect known as the "sulfur-shuttle". This study introduces a solution by developing a microporous, covalently-bonded, imine-based polymer network grown in situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li-ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g-1) to 3 C (807 mAh g-1). Demonstrating a high-performance, sustainable sulfur cathode produced via a simple one-pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal-based cathodes.

3.
Small ; 19(32): e2300730, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37078833

RESUMO

In2 O3 , an n-type semiconducting transparent transition metal oxide, possesses a surface electron accumulation layer (SEAL) resulting from downward surface band bending due to the presence of ubiquitous oxygen vacancies. Upon annealing In2 O3 in ultrahigh vacuum or in the presence of oxygen, the SEAL can be enhanced or depleted, as governed by the resulting density of oxygen vacancies at the surface. In this work, an alternative route to tune the SEAL by adsorption of strong molecular electron donors (specifically here ruthenium pentamethylcyclopentadienyl mesitylene dimer, [RuCp*mes]2 ) and acceptors (here 2,2'-(1,3,4,5,7,8-hexafluoro-2,6-naphthalene-diylidene)bis-propanedinitrile, F6 TCNNQ) is demonstrated. Starting from an electron-depleted In2 O3 surface after annealing in oxygen, the deposition of [RuCp*mes]2 restores the accumulation layer as a result of electron transfer from the donor molecules to In2 O3 , as evidenced by the observation of (partially) filled conduction sub-bands near the Fermi level via angle-resolved photoemission spectroscopy, indicating the formation of a 2D electron gas due to the SEAL. In contrast, when F6 TCNNQ is deposited on a surface annealed without oxygen, the electron accumulation layer vanishes and an upward band bending is generated at the In2 O3 surface due to electron depletion by the acceptor molecules. Hence, further opportunities to expand the application of In2 O3 in electronic devices are revealed.

4.
Phys Chem Chem Phys ; 25(43): 29718-29726, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37882732

RESUMO

The surface molecular doping of organic semiconductors can play an important role in the development of organic electronic or optoelectronic devices. Single-crystal rubrene remains a leading molecular candidate for applications in electronics due to its high hole mobility. In parallel, intensive research into the fabrication of flexible organic electronics requires the careful design of functional interfaces to enable optimal device characteristics. To this end, the present work seeks to understand the effect of surface molecular doping on the electronic band structure of rubrene single crystals. Our angle-resolved photoemission measurements reveal that the Fermi level moves in the band gap of rubrene depending on the direction of surface electron-transfer reactions with the molecular dopants, yet the valence band dispersion remains essentially unperturbed. This indicates that surface electron-transfer doping of a molecular single crystal can effectively modify the near-surface charge density, while retaining good charge-carrier mobility.

5.
Nat Mater ; 20(10): 1407-1413, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34112978

RESUMO

Blending organic molecules to tune their energy levels is currently being investigated as an approach to engineer the bulk and interfacial optoelectronic properties of organic semiconductors. It has been proven that the ionization energy and electron affinity can be equally shifted in the same direction by electrostatic effects controlled by blending similar halogenated derivatives with different energetics. Here we show that the energy gap of organic semiconductors can also be tuned by blending. We use oligothiophenes with different numbers of thiophene rings as an example and investigate their structure and electronic properties. Photoelectron spectroscopy and inverse photoelectron spectroscopy show tunability of the single-particle gap, with the optical gaps showing similar, but smaller, effects. Theoretical analysis shows that this tuning is mainly caused by a change in the dielectric constant with blend ratio. Further studies will explore the practical impact of this energy-level engineering strategy for optoelectronic devices.

6.
Phys Chem Chem Phys ; 24(5): 3109-3118, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35040854

RESUMO

Molecular doping is a key process to increase the density of charge carriers in organic semiconductors. Doping-induced charges in polymer semiconductors result in the formation of polarons and/or bipolarons due to the strong electron-vibron coupling in conjugated organic materials. Identifying the nature of charge carriers in doped polymers is essential to optimize the doping process for applications. In this work, we use Raman spectroscopy to investigate the formation of charge carriers in molecularly doped poly(3-hexylthiophene-2,5-diyl) (P3HT) for increasing dopant concentration, with the organic salt dimesityl borinium tetrakis(penta-fluorophenyl)borate (Mes2B+ [B(C6F5)4]-) and the Lewis acid tris(pentafluorophenyl)borane [B(C6F5)3]. While the Raman signatures of neutral P3HT and singly charged P3HT segments (polarons) are known, the Raman spectra of doubly charged P3HT segments (bipolarons) are not yet sufficiently understood. Combining Raman spectroscopy measurements on doped P3HT thin films with first-principles calculations on oligomer models, we explain the evolution of the Raman spectra from neutral P3HT to increasingly doped P3HT featuring polarons and eventually bipolarons at high doping levels. We identify and explain the origin of the spectral features related to bipolarons by tracing the Raman signature of the symmetric collective vibrations along the polymer backbone, which - compared to neutral P3HT - redshifts for polarons and blueshifts for bipolarons. This is explained by a planarization of the singly charged P3HT segments with polarons and rather high order in thin films, while the doubly charged segments with bipolarons are located in comparably disordered regions of the P3HT film due to the high dopant concentration. Furthermore, we identify additional Raman peaks associated with vibrations in the quinoid doubly charged segments of the polymer. Our results offer the opportunity for readily identifying the nature of charge carriers in molecularly doped P3HT while taking advantage of the simplicity, versatility, and non-destructive nature of Raman spectroscopy.

7.
Angew Chem Int Ed Engl ; 61(1): e202113549, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34677888

RESUMO

We report the successful synthesis of tetramesityldiborane(4) (Mes4 B2 ) through the reductive coupling of a dimesitylborinium ion. Owing to the steric protection conferred by the mesityl groups, Mes4 B2 shows exceptional chemical stability and remains intact in water. Single-crystal X-ray analysis revealed that Mes4 B2 has an orthogonal geometry, where the B-B center is completely hidden by the mesityl groups. Remarkably, Mes4 B2 emits dual fluorescence at 460 and 620 nm, both in solution and in the solid state. Theoretical calculations showed that Mes4 B2 in the excited S1 state adopts a twisted or planar geometry, which is responsible for the shorter- or longer-wavelength fluorescence, respectively. The intensity ratio of the dual fluorescence is sensitive to the viscosity of the medium, which suggests that Mes4 B2 has potential as a ratiometric viscosity sensor.

8.
J Am Chem Soc ; 143(25): 9595-9600, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34128669

RESUMO

Ligands in ligand-protected metal clusters play a crucial role, not only because of their interaction with the metal core, but also because of the functionality they provide to the cluster. Here, we report the utilization of secondary phosphine oxide (SPO), as a new family of functional ligands, for the preparation of an undecagold cluster Au11-SPO. Different from the commonly used phosphine ligand (i.e., triphenylphosphine, TPP), the SPOs in Au11-SPO work as electron-withdrawing anionic ligands. While coordinating to gold via the phosphorus atom, the SPO ligand keeps its O atom available to act as a nucleophile. Upon photoexcitation, the clusters are found to inject holes into p-type semiconductors (here, bismuth oxide is used as a model), sensitizing the p-type semiconductor in a different way compared to the photosensitization of a n-type semiconductor. Furthermore, the Au11-SPO/Bi2O3 photocathode exhibits a much higher activity toward the hydrogenation of benzaldehyde than a TPP-protected Au11-sensitized Bi2O3 photocathode. Control experiments and density functional theory studies point to the crucial role of the cooperation between gold and the SPO ligands on the selectivity toward the hydrogenation of the C═O group in benzaldehyde.

9.
Phys Rev Lett ; 127(24): 246401, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951794

RESUMO

In contrast to the common conception that the interfacial energy-level alignment is affixed once the interface is formed, we demonstrate that heterojunctions between organic semiconductors and metal-halide perovskites exhibit huge energy-level realignment during photoexcitation. Importantly, the photoinduced level shifts occur in the organic component, including the first molecular layer in direct contact with the perovskite. This is caused by charge-carrier accumulation within the organic semiconductor under illumination and the weak electronic coupling between the junction components.

10.
Phys Chem Chem Phys ; 23(24): 13458-13467, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34095913

RESUMO

The energy level alignment after the formation of a molecular tunnel junction is often poorly understood because spectroscopy inside junctions is not possible, which hampers the rational design of functional molecular junctions and complicates the interpretation of the data generated by molecular junctions. In molecular junction platforms where the top electrode-molecule interaction is weak; one may argue that the energy level alignment can be deduced from measurements with the molecules supported by the bottom electrode (sometimes referred to as "half junctions"). This approach, however, still relies on a series of assumptions, which are challenging to address experimentally due to difficulties in studying the molecule-top electrode interaction. Herein, we describe top electrode-molecule junctions with a liquid metal alloy top electrode of EGaIn (which stands for eutectic alloy of Ga and In) interacting with well-characterised ferrocene (Fc) moieties. We deposited a ferrocene derivative on films of EGaIn, coated with its native GaOx layer, and studied the energy level alignment with photoelectron spectroscopy. Our results reveal that the electronic interaction between the Fc and GaOx/EGaIn is very weak, resembling physisorption. Therefore, investigations of "half junctions" for this system can provide valuable information regarding the energy level alignment of complete EGaIn junctions. Our results help to improve our understanding of the energy landscape in weakly coupled molecular junctions and aid to the rational design of molecular electronic devices.

11.
Nat Mater ; 18(12): 1327-1334, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31527809

RESUMO

Precise doping of organic semiconductors allows control over the conductivity of these materials, an essential parameter in electronic applications. Although Lewis acids have recently shown promise as dopants for solution-processed polymers, their doping mechanism is not yet fully understood. In this study, we found that B(C6F5)3 is a superior dopant to the other Lewis acids investigated (BF3, BBr3 and AlCl3). Experiments indicate that Lewis acid-base adduct formation with polymers inhibits the doping process. Electron-nuclear double-resonance and nuclear magnetic resonance experiments, together with density functional theory, show that p-type doping occurs by generation of a water-Lewis acid complex with substantial Brønsted acidity, followed by protonation of the polymer backbone and electron transfer from a neutral chain segment to a positively charged, protonated one. This study provides insight into a potential path for protonic acid doping and shows how trace levels of water can transform Lewis acids into powerful Brønsted acids.

12.
Angew Chem Int Ed Engl ; 59(20): 7748-7754, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32068941

RESUMO

The deposition of an atomically precise nanocluster, for example, Ag44 (SR)30 , onto a large-band-gap semiconductor such as TiO2 allows a clear interface to be obtained to study charge transfer at the interface. Changing the light source from visible light to simulated sunlight led to a three orders of magnitude enhancement in the photocatalytic H2 generation, with the H2 production rate reaching 7.4 mmol h-1 gcatalyst -1 . This is five times higher than that of TiO2 modified with Ag nanoparticles and even comparable to that of TiO2 modified with Pt nanoparticles under similar conditions. Energy band alignment and transient absorption spectroscopy reveal that the role of the metal clusters is different from that of both organometallic complexes and plasmonic nanoparticles: A type II heterojunction charge-transfer route is achieved under UV/Vis irradiation, with the cluster serving as a small-band-gap semiconductor. This results in the clusters acting as co-catalysts rather than merely photosensitizers.

13.
Nat Mater ; 17(2): 204, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-31745271

RESUMO

Nature Materials 16, 1209-1215 (2017); published online 13 November 2017; corrected after print 15 December 2017. In the version of this Article originally published, the source of 'ZADN' stated in the Methods should have read 'obtained as free research samples from Guangzhou ChinaRay OptoelectronicMaterials' instead of 'China-Ray'.

15.
Phys Chem Chem Phys ; 21(27): 15072-15079, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31241108

RESUMO

The electronic properties of the organic/inorganic semiconductor heterojunction formed by para-sexiphenyl (6P) and three different faces of ZnO are investigated using photoelectron spectroscopy and X-ray absorption. While multilayer molecules stand almost upright with respect to the surface plane, we evidence the presence of a lying 6P interlayer, which exhibits a higher electron affinity. This is due to an energy gap narrowing because of the close vicinity of that interlayer to the higher dielectric constant ZnO and a more planar molecular conformation compared to molecules in the bulk. Both effects have a significant impact on the level alignment mechanisms at the three interfaces, i.e., surface electron push-back and Fermi level pinning. We disentangle the contribution of each effect to the level alignment for both standing and lying 6P layers and show that on ZnO(0001[combining macron]) only the push-back contributes, while on ZnO(101[combining macron]0) and ZnO(0001) Femi level pinning occurs in addition. In all three cases the lying 6P interlayer establishes the same work function to which the levels of the 6P multilayer align. Only the identification of the complex interplay of level alignment mechanisms and molecular degrees of freedom allows deriving a reliable picture of the energy levels at this heterojunction. This is important as the presence of an interlayer and its modified electronic states might go unnoticed, and conclusions on the correlation between purported interfacial energy levels and functionality of such semiconductor heterojunctions could be misleading.

16.
Angew Chem Int Ed Engl ; 58(28): 9394-9398, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31070846

RESUMO

Triazine-based graphitic carbon nitride (TGCN) is the most recent addition to the family of graphene-type, two-dimensional, and metal-free materials. Although hailed as a promising low-band-gap semiconductor for electronic applications, so far, only its structure and optical properties have been known. Here, we combine direction-dependent electrical measurements and time-resolved optical spectroscopy to determine the macroscopic conductivity and microscopic charge-carrier mobilities in this layered material "beyond graphene". Electrical conductivity along the basal plane of TGCN is 65 times lower than through the stacked layers, as opposed to graphite. Furthermore, we develop a model for this charge-transport behavior based on observed carrier dynamics and random-walk simulations. Our combined methods provide a path towards intrinsic charge transport in a direction-dependent layered semiconductor for applications in field-effect transistors (FETs) and sensors.

17.
Nat Mater ; 16(12): 1209-1215, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29170548

RESUMO

Chemical doping of organic semiconductors using molecular dopants plays a key role in the fabrication of efficient organic electronic devices. Although a variety of stable molecular p-dopants have been developed and successfully deployed in devices in the past decade, air-stable molecular n-dopants suitable for materials with low electron affinity are still elusive. Here we demonstrate that photo-activation of a cleavable air-stable dimeric dopant can result in kinetically stable and efficient n-doping of host semiconductors, whose reduction potentials are beyond the thermodynamic reach of the dimer's effective reducing strength. Electron-transport layers doped in this manner are used to fabricate high-efficiency organic light-emitting diodes. Our strategy thus enables a new paradigm for using air-stable molecular dopants to improve conductivity in, and provide ohmic contacts to, organic semiconductors with very low electron affinity.

18.
FASEB J ; 31(4): 1650-1667, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28119397

RESUMO

Herpes simplex virus (HSV)-encoded glycoprotein B (gB) is the most abundant protein in the viral envelope and promotes fusion of the virus with the cellular membrane. In the present study, we found that gB impacts on the major histocompatibility complex (MHC)-II pathway of antigen presentation by fostering homotypic fusion of early endosomes and trapping MHC-II molecules in these altered endosomes. By using an overexpression approach, we demonstrated that transient expression of gB induces giant vesicles of early endosomal origin, which contained Rab5, early endosomal antigen 1 (EEA1), and large amounts of MHC-II molecules [human leukocyte antigen (HLA)-DR, and HLA-DM], but no CD63. In HSV-1-infected and stably transfected cell lines that expressed lower amounts of gB, giant endosomes were not observed, but strongly increased amounts of HLA-DR and HLA-DM were found in EEA1+ early endosomes. We used these giant vesicles as a model system and revealed that gB interacts with Rab5 and EEA1, and that gB-induced homotypic fusion of early endosomes to giant endosomes requires phosphatidylinositol 3-phosphate, the activity of soluble N-ethylmaleimide-sensitive factor attachment protein receptors, and the cytosolic gB sequence 889YTQVPN894 We conclude that gB expression alters trafficking of molecules of the HLA-II processing pathway, which leads to increased retention of MHC-II molecules in early endosomal compartments, thereby intercepting antigen presentation.-Niazy, N., Temme, S., Bocuk, D., Giesen, C., König, A., Temme, N., Ziegfeld, A., Gregers, T. F., Bakke, O., Lang, T., Eis-Hübinger, A. M., Koch, N. Misdirection of endosomal trafficking mediated by herpes simplex virus-encoded glycoprotein B.


Assuntos
Endossomos/metabolismo , Proteínas do Envelope Viral/metabolismo , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Endossomos/virologia , Antígenos HLA-D/metabolismo , Antígenos HLA-DR/metabolismo , Células HeLa , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Transporte Proteico , Tetraspanina 30/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
19.
Nano Lett ; 17(2): 1149-1153, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28098466

RESUMO

The scaling of nonvolatile memory (NVM) devices based on resistive filament switching to below a 100 nm2 footprint area without employing cumbersome lithography is demonstrated. Nanocolumns of the organic semiconductor 4,4-bis[N-(1-naphthyl)-N-phenyl-amino]diphenyl (α-NPD) were grown by glancing angle deposition on a silver electrode. Individual NVM devices were electrically characterized by conductive atomic force microscopy with the tip of a conductive cantilever serving as second electrode. The resistive switching mechanism is unambiguously attributed to Ag filament formation between the electrodes. This sets the upper limit for the filament diameter to well below 100 nm. Full functionality of these NVM nanodevices is evidenced, revealing a potential memory density of >1 GB/cm2 in appropriate architectures.

20.
Acc Chem Res ; 49(3): 370-8, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26854611

RESUMO

Today's information society depends on our ability to controllably dope inorganic semiconductors, such as silicon, thereby tuning their electrical properties to application-specific demands. For optoelectronic devices, organic semiconductors, that is, conjugated polymers and molecules, have emerged as superior alternative owing to the ease of tuning their optical gap through chemical variability and their potential for low-cost, large-area processing on flexible substrates. There, the potential of molecular electrical doping for improving the performance of, for example, organic light-emitting devices or organic solar cells has only recently been established. The doping efficiency, however, remains conspicuously low, highlighting the fact that the underlying mechanisms of molecular doping in organic semiconductors are only little understood compared with their inorganic counterparts. Here, we review the broad range of phenomena observed upon molecularly doping organic semiconductors and identify two distinctly different scenarios: the pairwise formation of both organic semiconductor and dopant ions on one hand and the emergence of ground state charge transfer complexes between organic semiconductor and dopant through supramolecular hybridization of their respective frontier molecular orbitals on the other hand. Evidence for the occurrence of these two scenarios is subsequently discussed on the basis of the characteristic and strikingly different signatures of the individual species involved in the respective doping processes in a variety of spectroscopic techniques. The critical importance of a statistical view of doping, rather than a bimolecular picture, is then highlighted by employing numerical simulations, which reveal one of the main differences between inorganic and organic semiconductors to be their respective density of electronic states and the doping induced changes thereof. Engineering the density of states of doped organic semiconductors, the Fermi-Dirac occupation of which ultimately determines the doping efficiency, thus emerges as key challenge. As a first step, the formation of charge transfer complexes is identified as being detrimental to the doping efficiency, which suggests sterically shielding the functional core of dopant molecules as an additional design rule to complement the requirement of low ionization energies or high electron affinities in efficient n-type or p-type dopants, respectively. In an extended outlook, we finally argue that, to fully meet this challenge, an improved understanding is required of just how the admixture of dopant molecules to organic semiconductors does affect the density of states: compared with their inorganic counterparts, traps for charge carriers are omnipresent in organic semiconductors due to structural and chemical imperfections, and Coulomb attraction between ionized dopants and free charge carriers is typically stronger in organic semiconductors owing to their lower dielectric constant. Nevertheless, encouraging progress is being made toward developing a unifying picture that captures the entire range of doping induced phenomena, from ion-pair to complex formation, in both conjugated polymers and molecules. Once completed, such a picture will provide viable guidelines for synthetic and supramolecular chemistry that will enable further technological advances in organic and hybrid organic/inorganic devices.


Assuntos
Desenho de Equipamento , Compostos Orgânicos/química , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA