Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 48(8): 2094-2097, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37058650

RESUMO

High harmonic generation (HHG) in monolayer MoS2 is studied using fully microscopic many-body models based on the semiconductor Bloch equations and density functional theory. It is shown that Coulomb correlations lead to a dramatic enhancement of HHG. In particular, near the bandgap, enhancements of two orders of magnitude or more are observed for a wide range of excitation wavelengths and intensities. For excitation at excitonic resonances, strong absorption leads to spectrally broad sub-floors of the harmonics that is absent without Coulomb interaction. The widths of these sub-floors depend strongly on the dephasing time for polarizations. For times of the order of 10 fs the broadenings are comparable to the Rabi energies and reach one electronvolt at fields of approximately 50 MV/cm. The intensities of these contributions are approximately four to six orders below the peaks of the harmonics.

2.
Phys Rev Lett ; 125(8): 083901, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909805

RESUMO

The influence of propagation on the nonperturbative high-harmonic features in long-wavelength strong pulse excited semiconductors is studied using a fully microscopic approach. For sample lengths exceeding the wavelength of the exciting light, it is shown that the propagation effectively acts as a very strong additional dephasing that reduces the relative height of the emission plateau up to six orders of magnitude. This propagation induced dephasing clarifies the need to use extremely short polarization decay times for the quantitative analysis of experimental observations.

3.
Opt Lett ; 44(12): 3122-3125, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-31199396

RESUMO

We identify a two-stage filamentation regime for high-power 10 µm multipicosecond pulses propagating in the atmosphere. The first low-intensity stage is mainly regularized by ionization through excitation induced dephasing, which can lead to strong pulse shortening downstream. This shortening in turn causes a significant reduction of the many-body induced plasma, which changes the dynamics drastically. As a result, a distinct second stage is predicted where peak intensities are clamped at 1 order of magnitude higher than in the first stage. The complex dynamics found in the second stage can result in the spatial and temporal breakup of the wavepacket, reduction of ionization losses, and extreme spectral broadening.

4.
Opt Lett ; 42(19): 3722-3725, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957115

RESUMO

We predict that long wavelength self-trapped multi-terawatt pulses can be sustained over multiple kilometers in the atmosphere. Unlike filaments, these pulses exhibit low loss propagation and retain most of their launch power at range. A novel mechanism involving an aggregation of weakly linear and nonlinear cumulative optical responses is shown to be responsible and is dominated by an ultrafast dynamical lensing resulting from a field intensity driven many-body Coulomb mediated free electron polarization associated with spatially separated species in the gas. An initial few picosecond pulse can compress down to 140 fs over multiple kilometers.

5.
Opt Lett ; 40(23): 5459-62, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26625025

RESUMO

We utilize an asynchronous optical sampling technique to study the gain dynamics of vertical-external-cavity-surface-emitting lasers (VECSELs) under mode-locked operation. This allows for an in situ characterization of the gain depletion and recovery over nanoseconds with femtosecond-scale resolution. Our method allows for a more direct study of intracavity gain dynamics than traditional pump/probe measurements. We observe a rapid depletion of the gain on the timescale of the intracavity pulse. Afterward, a rapid recovery over a few picoseconds due to intraband scattering and carrier heating takes place, followed by a long recovery attributed to the continuous supply of carriers by the pump laser.

6.
Opt Express ; 21(26): 31940-50, 2013 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-24514789

RESUMO

The longitudinal multi-mode emission in a vertical-external-cavity surface-emitting laser is investigated using both single shot streak camera measurements and interferometric measurement techniques. For this, the laser is operated in the single- and two-color emission regime using both an etalon and a free-running configuration without etalon, respectively. The laser emission is analyzed with respect to pump power and output coupling losses for a long and for a short resonator. We observe a steep increase of emission bandwidth close to the laser threshold and monitor the transition between longitudinal single- and multi-mode operation. Additionally, the results indicate that a stable two-color operation is related to a sufficiently high number of oscillating longitudinal modes within each color.


Assuntos
Transferência de Energia , Lasers , Espalhamento de Radiação , Desenho de Equipamento , Análise de Falha de Equipamento
7.
Opt Lett ; 38(18): 3654-7, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24104838

RESUMO

We demonstrate a continuous wave, single-frequency terahertz (THz) source emitting 1.9 THz. The linewidth is less than 100 kHz and the generated THz output power exceeds 100 µW. The THz source is based on parametric difference frequency generation within a nonlinear crystal located in an optical enhancement cavity. Two single-frequency vertical-external-cavity source-emitting lasers with emission wavelengths spaced by 6.8 nm are phase locked to the external cavity and provide pump photons for the nonlinear downconversion. It is demonstrated that the THz source can be used as a local oscillator to drive a receiver used in astronomy applications.

8.
Opt Lett ; 37(1): 25-7, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22212779

RESUMO

Wide wavelength tunability of single- and two-color operating vertical-external-cavity-surface-emitting lasers (VECSELs) is demonstrated. Employing an external feedback based on a diffractive grating outside the cavity of a narrow-line single-color VECSEL allows for a continuous tuning of the emission wavelength over 10 nm. Employing a dual-feedback-configuration for tunable two-color emission, a tunability of the difference frequency between the two lasing wavelengths from 300 gigahertz to up to 3.5 terahertz is demonstrated.

9.
J Phys Condens Matter ; 34(28)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453129

RESUMO

Anab initiobased fully microscopic many-body approach is used to study the carrier relaxation dynamics in monolayer transition-metal dichalcogenides. Bandstructures and wavefunctions as well as phonon energies and coupling matrix elements are calculated using density functional theory. The resulting dipole and Coulomb matrix elements are implemented in the Dirac-Bloch equations to calculate carrier-carrier and carrier-phonon scatterings throughout the whole Brillouin zone (BZ). It is shown that carrier scatterings lead to a relaxation into hot quasi-Fermi distributions on a single femtosecond timescale. Carrier cool down and inter-valley transitions are mediated by phonon scatterings on a picosecond timescale. Strong, density-dependent energy renormalizations are shown to be valley-dependent. For MoTe2, MoSe2and MoS2the change of energies with occupation is found to be about 50% stronger in the Σ and Λ side valleys than in theKandK' valleys. However, for realistic carrier densities, the materials always maintain their direct bandgap at theKpoints of the BZ.

10.
Opt Express ; 18(26): 27112-7, 2010 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-21196987

RESUMO

We present a continuous wave terahertz source based on intracavity difference frequency generation within a dual color vertical external cavity surface emitting laser. Using a nonlinear crystal with a surface emitting phase matching scheme allows for high conversion efficiencies. Due to the tunability of the dual mode spacing, the entire spectral range of the terahertz gap can be covered. The terahertz output scales quadratically with the intracavity intensity, potentially allowing for terahertz intensities in the range of 10s of milliwatts and beyond.


Assuntos
Lasers , Iluminação/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Temperatura , Radiação Terahertz
11.
Opt Lett ; 34(22): 3511-3, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19927194

RESUMO

Up to 136 mW of cw single-frequency output at 295 nm was obtained from a frequency-quadrupled optically pumped semiconductor laser. The highly strained InGaAs quantum-well semiconductor laser operates at 1178 nm in a single frequency. The single-frequency intracavity-doubled 589 nm output is further converted to 295 nm in an external resonator using beta-BaB(2)O(4).

12.
Science ; 352(6291): 1301-4, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27284190

RESUMO

Tailored light sources have greatly advanced technological and scientific progress by optimizing the emission spectrum or color and the emission characteristics. We demonstrate an efficient spectrally broadband and highly directional warm-white-light emitter based on a nonlinear process driven by a cheap, low-power continuous-wave infrared laser diode. The nonlinear medium is a specially designed amorphous material composed of symmetry-free, diamondoid-like cluster molecules that are readily obtained from ubiquitous resources. The visible part of the spectrum resembles the color of a tungsten-halogen lamp at 2900 kelvin while retaining the superior beam divergence of the driving laser. This approach of functionalizing energy-efficient state-of-the-art semiconductor lasers enables a technology complementary to light-emitting diodes for replacing incandescent white-light emitters in high-brilliance applications.

13.
Opt Lett ; 31(22): 3300-2, 2006 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17072403

RESUMO

We provide what we believe is the first closed-loop prediction of a semiconductor laser performance using fully microscopic many-body models for the spontaneous emission, gain, and carrier recombination losses due to Auger processes without having to resort to phenomenological adjustable fit parameters.

14.
Opt Lett ; 31(24): 3612-4, 2006 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-17130920

RESUMO

We propose an efficient coherent power scaling scheme, the multichip vertical-external-cavity surface-emitting laser (VECSEL), in which the waste heat generated in the active region is distributed on multi-VECSEL chips such that the pump level at the thermal rollover is significantly increased. The advantages of this laser are discussed, and the development and demonstration of a two-chip VECSEL operating around 970 nm with over 19 W of output power is presented.

15.
Opt Lett ; 30(11): 1384-6, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15981541

RESUMO

We present phase-resolved pulse propagation measurements that allow us to fully describe the transition between several light-matter interaction regimes. The complete range from linear excitation to the breakdown of the photonic bandgap on to self-induced transmission and self-phase modulation is studied on a high-quality multiple-quantum-well Bragg structure. An improved fast-scanning cross-correlation frequency-resolved optical gating setup is applied to retrieve the pulse phase with an excellent signal-to-noise ratio. Calculations using the semiconductor Maxwell-Bloch equations show qualitative agreement with the experimental findings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA