Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33372131

RESUMO

Genetic changes that altered the function of gene regulatory elements have been implicated in the evolution of human traits such as the expansion of the cerebral cortex. However, identifying the particular changes that modified regulatory activity during human evolution remain challenging. Here we used massively parallel enhancer assays in neural stem cells to quantify the functional impact of >32,000 human-specific substitutions in >4,300 human accelerated regions (HARs) and human gain enhancers (HGEs), which include enhancers with novel activities in humans. We found that >30% of active HARs and HGEs exhibited differential activity between human and chimpanzee. We isolated the effects of human-specific substitutions from background genetic variation to identify the effects of genetic changes most relevant to human evolution. We found that substitutions interacted in both additive and nonadditive ways to modify enhancer function. Substitutions within HARs, which are highly constrained compared to HGEs, showed smaller effects on enhancer activity, suggesting that the impact of human-specific substitutions is buffered in enhancers with constrained ancestral functions. Our findings yield insight into how human-specific genetic changes altered enhancer function and provide a rich set of candidates for studies of regulatory evolution in humans.


Assuntos
Evolução Biológica , Elementos Facilitadores Genéticos , Genoma Humano , Células-Tronco Neurais/metabolismo , Fatores de Transcrição/metabolismo , Animais , Humanos , Neocórtex , Pan troglodytes/genética
2.
Development ; 145(7)2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29549111

RESUMO

Developmental gene expression patterns are orchestrated by thousands of distant-acting transcriptional enhancers. However, identifying enhancers essential for the expression of their target genes has proven challenging. Maps of long-range regulatory interactions may provide the means to identify enhancers crucial for developmental gene expression. To investigate this hypothesis, we used circular chromosome conformation capture coupled with interaction maps in the mouse limb to characterize the regulatory topology of Pitx1, which is essential for hindlimb development. We identified a robust hindlimb-specific interaction between Pitx1 and a putative hindlimb-specific enhancer. To interrogate the role of this interaction in Pitx1 regulation, we used genome editing to delete this enhancer in mouse. Although deletion of the enhancer completely disrupts the interaction, Pitx1 expression in the hindlimb is only mildly affected, without any detectable compensatory interactions between the Pitx1 promoter and potentially redundant enhancers. Pitx1 enhancer null mice did not exhibit any of the characteristic morphological defects of the Pitx1-/- mutant. Our results suggest that robust, tissue-specific physical interactions at essential developmental genes have limited predictive value for identifying enhancer mutations with strong loss-of-function phenotypes.


Assuntos
Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Morfogênese/genética , Fatores de Transcrição Box Pareados/metabolismo , Animais , Elementos Facilitadores Genéticos/genética , Hibridização In Situ , Camundongos , Camundongos Knockout , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real
3.
J Bacteriol ; 197(6): 1065-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25561715

RESUMO

Bacterial strain variation exists in natural populations of bacteria and can be generated experimentally through directed or random mutation. The advent of rapid and cost-efficient whole-genome sequencing has facilitated strain-level genotyping. Even with modern tools, however, it often remains a challenge to map specific traits to individual genetic loci, especially for traits that cannot be selected under culture conditions (e.g., colonization level or pathogenicity). Using a combination of classical and modern approaches, we analyzed strain-level variation in Vibrio fischeri and identified the basis by which some strains lack the ability to utilize glycerol as a carbon source. We proceeded to reconstruct the lineage of the commonly used V. fischeri laboratory strains. Compared to the wild-type ES114 strain, we identify in ES114-L a 9.9-kb deletion with endpoints in tadB2 and glpF; restoration of the missing portion of glpF restores the wild-type phenotype. The widely used strains ESR1, JRM100, and JRM200 contain the same deletion, and ES114-L is likely a previously unrecognized intermediate strain in the construction of many ES114 derivatives. ES114-L does not exhibit a defect in competitive squid colonization but ESR1 does, demonstrating that glycerol utilization is not required for early squid colonization. Our genetic mapping approach capitalizes on the recently discovered chitin-based transformation pathway, which is conserved in the Vibrionaceae; therefore, the specific approach used is likely to be useful for mapping genetic traits in other Vibrio species.


Assuntos
Aliivibrio fischeri/metabolismo , Proteínas de Bactérias/metabolismo , Mapeamento Cromossômico , Regulação Bacteriana da Expressão Gênica/fisiologia , Transativadores/metabolismo , Aliivibrio fischeri/classificação , Aliivibrio fischeri/genética , Animais , Proteínas de Bactérias/genética , Portador Sadio , Cromossomos Bacterianos/genética , DNA Bacteriano , Decapodiformes/microbiologia , Marcadores Genéticos , Transativadores/genética
4.
Genome Biol ; 25(1): 156, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872220

RESUMO

BACKGROUND: Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. CpG islands (CGIs) have recently been shown to influence enhancer activity, and here we test how their turnover across species contributes to enhancer evolution. RESULTS: We integrate maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and find that CGI content in enhancers is strongly associated with increased histone modification levels. CGIs show widespread turnover across species and species-specific CGIs are strongly enriched for enhancers exhibiting species-specific activity across all tissues and species. Genes associated with enhancers with species-specific CGIs show concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. CONCLUSIONS: Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.


Assuntos
Ilhas de CpG , Elementos Facilitadores Genéticos , Evolução Molecular , Animais , Humanos , Camundongos , Especificidade da Espécie , Código das Histonas
5.
bioRxiv ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38352419

RESUMO

Transcriptional enhancers orchestrate cell type- and time point-specific gene expression programs. Evolution of enhancer sequences can alter target gene expression without causing detrimental misexpression in other contexts. It has long been thought that this modularity allows evolutionary changes in enhancers to escape pleiotropic constraints, which is especially important for evolutionary constrained developmental patterning genes. However, there is still little data supporting this hypothesis. Here we identified signatures of accelerated evolution in conserved enhancer elements across the mammalian phylogeny. We found that pleiotropic genes involved in gene regulatory and developmental processes were enriched for accelerated sequence evolution within their enhancer elements. These genes were associated with an excess number of enhancers compared to other genes, and due to this they exhibit a substantial degree of sequence acceleration over all their enhancers combined. We provide evidence that sequence acceleration is associated with turnover of regulatory function. We studied one acceleration event in depth and found that its sequence evolution led to the emergence of a new enhancer activity domain that may be involved in the evolution of digit reduction in hoofed mammals. Our results provide tangible evidence that enhancer evolution has been a frequent contributor to modifications involving constrained developmental signaling genes in mammals.

6.
bioRxiv ; 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37214934

RESUMO

Genetic changes that modify the function of transcriptional enhancers have been linked to the evolution of biological diversity across species. Multiple studies have focused on the role of nucleotide substitutions, transposition, and insertions and deletions in altering enhancer function. Here we show that turnover of CpG islands (CGIs), which contribute to enhancer activation, is broadly associated with changes in enhancer activity across mammals, including humans. We integrated maps of CGIs and enhancer activity-associated histone modifications obtained from multiple tissues in nine mammalian species and found that CGI content in enhancers was strongly associated with increased histone modification levels. CGIs showed widespread turnover across species and species-specific CGIs were strongly enriched for enhancers exhibiting species-specific activity across all tissues and species we examined. Genes associated with enhancers with species-specific CGIs showed concordant biases in their expression, supporting that CGI turnover contributes to gene regulatory innovation. Our results also implicate CGI turnover in the evolution of Human Gain Enhancers (HGEs), which show increased activity in human embryonic development and may have contributed to the evolution of uniquely human traits. Using a humanized mouse model, we show that a highly conserved HGE with a large CGI absent from the mouse ortholog shows increased activity at the human CGI in the humanized mouse diencephalon. Collectively, our results point to CGI turnover as a mechanism driving gene regulatory changes potentially underlying trait evolution in mammals.

7.
Nat Commun ; 13(1): 304, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027568

RESUMO

The evolution of uniquely human traits likely entailed changes in developmental gene regulation. Human Accelerated Regions (HARs), which include transcriptional enhancers harboring a significant excess of human-specific sequence changes, are leading candidates for driving gene regulatory modifications in human development. However, insight into whether HARs alter the level, distribution, and timing of endogenous gene expression remains limited. We examined the role of the HAR HACNS1 (HAR2) in human evolution by interrogating its molecular functions in a genetically humanized mouse model. We find that HACNS1 maintains its human-specific enhancer activity in the mouse embryo and modifies expression of Gbx2, which encodes a transcription factor, during limb development. Using single-cell RNA-sequencing, we demonstrate that Gbx2 is upregulated in the limb chondrogenic mesenchyme of HACNS1 homozygous embryos, supporting that HACNS1 alters gene expression in cell types involved in skeletal patterning. Our findings illustrate that humanized mouse models provide mechanistic insight into how HARs modified gene expression in human evolution.


Assuntos
Regulação da Expressão Gênica , Genoma , Modelos Genéticos , Animais , Sequência de Bases , Diferenciação Celular/genética , Condrócitos/citologia , Condrogênese/genética , Embrião de Mamíferos/metabolismo , Elementos Facilitadores Genéticos/genética , Epigênese Genética , Extremidades/embriologia , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homozigoto , Humanos , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos Endogâmicos C57BL , Pan troglodytes , Regiões Promotoras Genéticas/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA