Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Neurosci ; 35(49): 16282-94, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26658876

RESUMO

The chromosome 15q13.3 microdeletion is a pathogenic copy number variation conferring epilepsy, intellectual disability, schizophrenia, and autism spectrum disorder (ASD). We generated mice carrying a deletion of 1.2 Mb homologous to the 15q13.3 microdeletion in human patients. Here, we report that mice with a heterozygous deletion on a C57BL/6 background (D/+ mice) demonstrated phenotypes including enlarged/heavier brains (macrocephaly) with enlarged lateral ventricles, decreased social interactions, increased repetitive grooming behavior, reduced ultrasonic vocalizations, decreased auditory-evoked gamma band EEG, and reduced event-related potentials. D/+ mice had normal body weight, activity levels, sensory gating, and cognitive abilities and no signs of epilepsy/seizures. Our results demonstrate that D/+ mice represent ASD-related phenotypes associated with 15q13.3 microdeletion syndrome. Further investigations using this chromosome-engineered mouse model may uncover the common mechanism(s) underlying ASD and other neurodevelopmental/psychiatric disorders representing the 15q13.3 microdeletion syndrome, including epilepsy, intellectual disability, and schizophrenia. SIGNIFICANCE STATEMENT: Recently discovered pathologic copy number variations (CNVs) from patients with neurodevelopmental/psychiatric disorders show very strong penetrance and thus are excellent candidates for mouse models of disease that can mirror the human genetic conditions with high fidelity. A 15q13.3 microdeletion in humans results in a range of neurodevelopmental/psychiatric disorders, including epilepsy, intellectual disability, schizophrenia, and autism spectrum disorder (ASD). The disorders conferred by a 15q13.3 microdeletion also have overlapping genetic architectures and comorbidity in other patient populations such as those with epilepsy and schizophrenia/psychosis, as well as schizophrenia and ASD. We generated mice carrying a deletion of 1.2 Mb homologous to the 15q13.3 microdeletion in human patients, which allowed us to investigate the potential causes of neurodevelopmental/psychiatric disorders associated with the CNV.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/patologia , Transtornos Cromossômicos/fisiopatologia , Deficiência Intelectual/fisiopatologia , Convulsões/fisiopatologia , Animais , Ansiedade/etiologia , Aprendizagem por Associação/fisiologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Deleção Cromossômica , Transtornos Cromossômicos/genética , Transtornos Cromossômicos/patologia , Cromossomos Humanos Par 15/genética , Discriminação Psicológica/efeitos dos fármacos , Discriminação Psicológica/fisiologia , Potenciais Evocados/fisiologia , Feminino , Expressão Gênica/fisiologia , Asseio Animal/fisiologia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Relações Interpessoais , Masculino , Memória/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pilocarpina/farmacologia , Convulsões/genética , Convulsões/patologia , Olfato/fisiologia , Vocalização Animal/fisiologia
2.
Neurobiol Dis ; 73: 289-95, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25461194

RESUMO

Reductions in glutamate function are regarded as an important contributory factor in schizophrenia. However, there is a paucity of animal models characterized by developmental and sustained reductions in glutamate function. Pharmacological models using NMDA antagonists have been widely used but these typically produce only transient changes in behavior and brain function. Likewise, mice with homozygous constitutive reductions in glutamate receptor expression show stable brain and behavioral changes, but many of these phenotypes are more severe than the human disease. The current study examines a variety of schizophrenia-related EEG measures in mice with a heterozygous alteration of the NMDA receptor NR1 subunit gene (NR1) that is known to result in reduced NR1 receptor expression in the homozygous mouse (NR1-/-). (NR1+/-) mice showed a 30% reduction in NR1 receptor expression and were reared after weaning in either group or isolated conditions. Outcome measures include the response to paired white noise stimuli, escalating inter-stimulus intervals (ISIs) and deviance-related mismatch negativity (MMN). In contrast to what has been reported in (NR1-/-) mice and mice treated with NMDA antagonists, (NR1+/-) mice showed no change on obligatory Event Related Potential (ERP) measures including the murine P50 and N100 equivalents (P20 and N40), or measures of baseline or evoked gamma power. Alternatively, (NR1+/-) mice showed a marked reduction in response to a deviant auditory tone during MMN task. Data suggest that EEG response to deviant, rather than static, stimuli may be more sensitive for detecting subtle changes in glutamate function. Deficits in these heterozygous NR1 knockdown mice are consistent with data demonstrating MMN deficits among family members of schizophrenia patients and among prodromal patients. Therefore, the current study suggests that (NR1+/-) mice may be among the most sensitive models for increased vulnerability to schizophrenia.


Assuntos
Encéfalo/fisiopatologia , Potenciais Evocados/fisiologia , Ritmo Gama/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/fisiopatologia , Isolamento Social , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Sintomas Prodrômicos
3.
Stem Cells ; 32(9): 2454-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24806094

RESUMO

In the postnatal hippocampus, newly generated neurons contribute to learning and memory. Disruptions in neurogenesis and neuronal development have been linked to cognitive impairment and are implicated in a broad variety of neurological and psychiatric disorders. To identify putative factors involved in this process, we examined hippocampal gene expression alterations in mice possessing a heterozygous knockout of the calcium/calmodulin-dependent protein kinase II alpha heterozygous knockout gene (CaMK2α-hKO), an established model of cognitive impairment that also displays altered neurogenesis and neuronal development. Using this approach, we identified gastrin-releasing peptide (GRP) as the most dysregulated gene. In wild-type mice, GRP labels NeuN-positive neurons, the lone exception being GRP-positive, NeuN-negative cells in the subgranular zone, suggesting GRP expression may be relevant to neurogenesis and/or neuronal development. Using a model of in vitro hippocampal neurogenesis, we determined that GRP signaling is essential for the continued survival and development of newborn neurons, both of which are blocked by transient knockdown of GRP's cognate receptor (GRPR). Furthermore, GRP appears to negatively regulate neurogenesis-associated proliferation in neural stem cells both in vitro and in vivo. Intracerebroventricular infusion of GRP resulted in a decrease in immature neuronal markers, increased cAMP response element-binding protein (CREB) phosphorylation, and decreased neurogenesis. Despite increased levels of GRP mRNA, CaMK2α-hKO mutant mice expressed reduced levels of GRP peptide. This lack of GRP may contribute to the elevated neurogenesis and impaired neuronal development, which are reversed following exogenous GRP infusion. Based on these findings, we hypothesize that GRP modulates neurogenesis and neuronal development and may contribute to hippocampus-associated cognitive impairment.


Assuntos
Peptídeo Liberador de Gastrina/metabolismo , Hipocampo/citologia , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Animais , Modelos Animais de Doenças , Peptídeo Liberador de Gastrina/genética , Peptídeo Liberador de Gastrina/farmacologia , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Transdução de Sinais
4.
Bipolar Disord ; 15(4): 405-21, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23560889

RESUMO

OBJECTIVES: There is accumulating evidence to suggest psychiatric disorders, such as bipolar disorder and schizophrenia, share common etiologies, pathophysiologies, genetics, and drug responses with many of the epilepsies. Here, we explored overlaps in cellular/molecular, electrophysiological, and behavioral phenotypes between putative mouse models of bipolar disorder/schizophrenia and epilepsy. We tested the hypothesis that an immature dentate gyrus (iDG), whose association with psychosis in patients has recently been reported, represents a common phenotype of both diseases. METHODS: Behaviors of calcium/calmodulin-dependent protein kinase II alpha (α-CaMKII) heterozygous knock-out (KO) mice, which are a representative bipolar disorder/schizophrenia model displaying iDG, and pilocarpine-treated mice, which are a representative epilepsy model, were tested followed by quantitative polymerase chain reaction (qPCR)/immunohistochemistry for mRNA/protein expression associated with an iDG phenotype. In vitro electrophysiology of dentate gyrus granule cells (DG GCs) was examined in pilocarpine-treated epileptic mice. RESULTS: The two disease models demonstrated similar behavioral deficits, such as hyperactivity, poor working memory performance, and social withdrawal. Significant reductions in mRNA expression and immunoreactivity of the mature neuronal marker calbindin and concomitant increases in mRNA expression and immunoreactivity of the immature neuronal marker calretinin represent iDG signatures that are present in both mice models. Electrophysiologically, we have confirmed that DG GCs from pilocarpine-treated mice represent an immature state. A significant decrease in hippocampal α-CaMKII protein levels was also found in both models. CONCLUSIONS: Our data have shown iDG signatures from mouse models of both bipolar disorder/schizophrenia and epilepsy. The evidence suggests that the iDG may, in part, be responsible for the abnormal behavioral phenotype, and that the underlying pathophysiologies in epilepsy and bipolar disorder/schizophrenia are strikingly similar.


Assuntos
Sintomas Comportamentais , Transtorno Bipolar , Calbindina 2/metabolismo , Giro Denteado , Epilepsia , Esquizofrenia , Animais , Sintomas Comportamentais/metabolismo , Sintomas Comportamentais/fisiopatologia , Biomarcadores/metabolismo , Transtorno Bipolar/metabolismo , Transtorno Bipolar/patologia , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/psicologia , Giro Denteado/crescimento & desenvolvimento , Giro Denteado/metabolismo , Giro Denteado/patologia , Modelos Animais de Doenças , Fenômenos Eletrofisiológicos , Epilepsia/metabolismo , Epilepsia/patologia , Epilepsia/fisiopatologia , Epilepsia/psicologia , Camundongos , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia
5.
Eur J Neurosci ; 36(5): 2597-608, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22697179

RESUMO

SREB2/GPR85, a member of the super-conserved receptor expressed in brain (SREB) family, is the most conserved G-protein-coupled receptor in vertebrate evolution. Previous human and mouse genetic studies have indicated a possible link between SREB2 and schizophrenia. SREB2 is robustly expressed in the hippocampal formation, especially in the dentate gyrus, a structure with an established involvement in psychiatric disorders and cognition. However, the function of SREB2 in the hippocampus remains elusive. Here we show that SREB2 regulates hippocampal adult neurogenesis, which impacts on cognitive function. Bromodeoxyuridine incorporation and immunohistochemistry were conducted in SREB2 transgenic (Tg, over-expression) and knockout (KO, null-mutant) mice to quantitatively assay adult neurogenesis and newborn neuron dendritic morphology. Cognitive responses associated with adult neurogenesis alteration were evaluated in SREB2 mutant mice. In SREB2 Tg mice, both new cell proliferation and new neuron survival were decreased in the dentate gyrus, whereas an enhancement of new neuron survival occurred in SREB2 KO mouse dentate gyrus. Doublecortin staining revealed dendritic morphology deficits of newly generated neurons in SREB2 Tg mice. In a spatial pattern separation task, SREB2 Tg mice displayed a decreased ability to discriminate spatial relationships, whereas SREB2 KO mice had enhanced abilities in this task. Additionally, SREB2 Tg and KO mice had reciprocal phenotypes in a Y-maze working memory task. Our results indicate that SREB2 is a negative regulator of adult neurogenesis and consequential cognitive functions. Inhibition of SREB2 function may be a novel approach to enhance hippocampal adult neurogenesis and cognitive abilities to ameliorate core symptoms of psychiatric patients.


Assuntos
Hipocampo/fisiologia , Aprendizagem , Memória , Neurogênese , Receptores Acoplados a Proteínas G/fisiologia , Animais , Proliferação de Células , Sobrevivência Celular , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Risco , Esquizofrenia/epidemiologia
6.
Nat Neurosci ; 5(4): 348-55, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11889468

RESUMO

The cAMP-responsive element binding protein (CREB) family of transcription factors is thought to be critical in memory formation. To define the role of CREB in distinct memory processes, we derived transgenic mice with an inducible and reversible CREB repressor by fusing CREBS133A to a tamoxifen (TAM)-dependent mutant of an estrogen receptor ligand-binding domain (LBD). We found that CREB is crucial for the consolidation of long-term conditioned fear memories, but not for encoding, storage or retrieval of these memories. Our studies also showed that CREB is required for the stability of reactivated or retrieved conditioned fear memories. Although the transcriptional processes necessary for the stability of initial and reactivated memories differ, CREB is required for both. The findings presented here delineate the memory processes that require CREB and demonstrate the power of LBD-inducible transgenic systems in the study of complex cognitive processes.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Medo/fisiologia , Regulação da Expressão Gênica , Memória/fisiologia , Animais , Encéfalo/metabolismo , Condicionamento Clássico/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
7.
PLoS One ; 7(4): e35264, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22558133

RESUMO

An increasing body of evidence suggests that alterations in neurogenesis and oxidative stress are associated with a wide variety of CNS diseases, including Alzheimer's disease, schizophrenia and Parkinson's disease, as well as routine loss of function accompanying aging. Interestingly, the association between neurogenesis and the production of reactive oxidative species (ROS) remains largely unexamined. The adult CNS harbors two regions of persistent lifelong neurogenesis: the subventricular zone and the dentate gyrus (DG). These regions contain populations of quiescent neural stem cells (NSCs) that generate mature progeny via rapidly-dividing progenitor cells. We hypothesized that the energetic demands of highly proliferative progenitors generates localized oxidative stress that contributes to ROS-mediated damage within the neuropoietic microenvironment. In vivo examination of germinal niches in adult rodents revealed increases in oxidized DNA and lipid markers, particularly in the subgranular zone (SGZ) of the dentate gyrus. To further pinpoint the cell types responsible for oxidative stress, we employed an in vitro cell culture model allowing for the synchronous terminal differentiation of primary hippocampal NSCs. Inducing differentiation in primary NSCs resulted in an immediate increase in total mitochondria number and overall ROS production, suggesting oxidative stress is generated during a transient window of elevated neurogenesis accompanying normal neurogenesis. To confirm these findings in vivo, we identified a set of oxidation-responsive genes, which respond to antioxidant administration and are significantly elevated in genetic- and exercise-induced model of hyperactive hippocampal neurogenesis. While no direct evidence exists coupling neurogenesis-associated stress to CNS disease, our data suggest that oxidative stress is produced as a result of routine adult neurogenesis.


Assuntos
Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Adulto , Animais , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Citarabina , DNA/metabolismo , Giro Denteado/citologia , Giro Denteado/metabolismo , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Reação em Cadeia da Polimerase em Tempo Real
8.
Hippocampus ; 14(5): 557-69, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15301434

RESUMO

Much attention has been paid to the associative processes that are necessary to fuse together representations of the various components of an episodic memory. In the present study, we focus on the processes involved in the formation of lasting representations of the individual components that make up a fear-conditioning episode. In one-trial contextual fear conditioning experiments, weak conditioning to context occurs if the shock is delivered immediately following placement of the animal in a novel conditioning apparatus, a phenomenon known as the immediate shock deficit. We show that the immediate shock deficit in mice may be alleviated by pre-exposure to either the context or shock. In using this approach to temporally dissect a contextual fear-conditioning task into its constituent representational and associative processes, we are able to examine directly the processes that are important for formation of lasting representations of the context conditioned stimulus (CS) or unconditioned stimulus (US). Our data indicate that the formation of a lasting representation of the context or shock engages protein synthesis-dependent processes. Furthermore, genetic disruption of cAMP-responsive element binding protein (CREB), a transcription factor that regulates the synthesis of new proteins required for long-term memory, disrupts the formation of lasting context memories. We go on to show that the stress hormone epinephrine modulates the consolidation of a context memory, and reverses consolidation deficits in the CREB-deficient mice. Finally we show that disrupting either NMDA or calcium/calmodulin-dependent kinase II (CaMKII) function impairs consolidation of context memories. Together, these data suggest that this approach is particularly suited for the characterization of molecular and cellular processes underlying the formation of stimulus representations.


Assuntos
Aprendizagem por Associação/fisiologia , Encéfalo/metabolismo , Condicionamento Clássico/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Medo/fisiologia , Memória/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Encéfalo/citologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Estimulação Elétrica , Epinefrina/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Hipocampo/citologia , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Proteínas do Tecido Nervoso/biossíntese , Vias Neurais/citologia , Vias Neurais/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA