Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-30670420

RESUMO

We designed, synthesized, and characterized a novel nucleoside analog, (1S,3S,5S)-3-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-5-hydroxy-1-(hydroxymethyl)-2-methylene-cyclopentanecarbonitrile, or 4'-cyano-methylenecarbocyclic-2'-deoxyguanosine (CMCdG), and evaluated its anti-hepatitis B virus (anti-HBV) activity, safety, and related features. CMCdG's in vitro activity was determined using quantitative PCR and Southern blotting assays, and its cytotoxicity was determined with a 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay, while its in vivo activity and safety were determined in human liver-chimeric mice infected with wild-type HBV genotype Ce (HBVWTCe) and an entecavir (ETV)-resistant HBV variant containing the amino acid substitutions L180M, S202G, and M204V (HBVETV-RL180M/S202G/M204V). CMCdG potently inhibited HBV production in HepG2.2.15 cells (50% inhibitory concentration [IC50], ∼30 nM) and HBVWTCe plasmid-transfected Huh7 cells (IC50, 206 nM) and efficiently suppressed ETV-resistant HBVETV-RL180M/S202G/M204V (IC50, 2,657 nM), while it showed no or little cytotoxicity (50% cytotoxic concentration, >500 µM in most hepatocytic cells examined). Two-week peroral administration of CMCdG (1 mg/kg of body weight/day once a day [q.d.]) to HBVWTCe-infected human liver-chimeric mice reduced the level of viremia by ∼2 logs. CMCdG also reduced the level of HBVETV-RL180M/S202G/M204V viremia by ∼1 log in HBVETV-RL180M/S202G/M204V-infected human liver-chimeric mice, while ETV (1 mg/kg/day q.d.) completely failed to reduce the viremia. None of the CMCdG-treated mice had significant drug-related changes in body weights or serum human albumin levels. Structural analyses using homology modeling, semiempirical quantum methods, and molecular dynamics revealed that although ETV triphosphate (TP) forms good van der Waals contacts with L180 and M204 of HBVWTCe reverse transcriptase (RT), its contacts with the M180 substitution are totally lost in the HBVETV-RL180M/S202G/M204V RT complex. However, CMCdG-TP retains good contacts with both the HBVWTCe RT and HBVETV-RL180M/S202G/M204V RT complexes. The present data warrant further studies toward the development of CMCdG as a potential therapeutic for patients infected with drug-resistant HBV and shed light on the further development of more potent and safer anti-HBV agents.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Hepatite B/tratamento farmacológico , Nucleosídeos/farmacologia , Purinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Animais , Antivirais/efeitos adversos , Linhagem Celular Tumoral , Replicação do DNA/efeitos dos fármacos , Descoberta de Drogas , Farmacorresistência Viral , Guanina/análogos & derivados , Guanina/farmacologia , Células Hep G2 , Humanos , Camundongos , Nucleosídeos/efeitos adversos , Purinas/efeitos adversos , Inibidores da Transcriptase Reversa/efeitos adversos , Albumina Sérica/análise
2.
Biochem Biophys Res Commun ; 509(4): 943-948, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30648556

RESUMO

Nucleoside analogue reverse transcriptase (RT) inhibitors (NRTIs) are major antiviral agents against hepatitis B virus (HBV) and human immunodeficiency virus type-1 (HIV-1). However, the notorious insoluble property of HBV RT has prevented atomic-resolution structural studies and rational anti-HBV drug design. Here, we created HIV-1 RT mutants containing HBV-mimicking sextuple or septuple amino acid substitutions at the nucleoside-binding site (N-site) and verified that these mutants retained the RT activity. The most active RT mutant, HIV-1 RT7MC, carrying Q151M/G112S/D113A/Y115F/F116Y/F160L/I159L was successfully crystallized, and its three-dimensional structure was determined in complex with DNA:dGTP/entecavir-triphosphate (ETV-TP), a potent anti-HBV guanosine analogue RT inhibitor, at a resolution of 2.43 Šand 2.60 Å, respectively. The structures reveal significant positional rearrangements of the amino acid side-chains at the N-site, elucidating the mechanism underlying the differential susceptibility of HIV-1 and HBV against recently reported 4'-modified NRTIs.


Assuntos
Transcriptase Reversa do HIV/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Substituição de Aminoácidos , Antivirais/farmacologia , Sítios de Ligação/genética , Domínio Catalítico , Cristalografia por Raios X , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , Vírus da Hepatite B/química , Vírus da Hepatite B/genética , Humanos , Proteínas Mutantes/química , Conformação Proteica , Inibidores da Transcriptase Reversa/química
3.
Hepatology ; 62(4): 1024-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26122273

RESUMO

UNLABELLED: Certain nucleoside/nucleotide reverse transcriptase (RT) inhibitors (NRTIs) are effective against human immunodeficiency virus type 1 (HIV-1) and hepatitis B virus (HBV). However, both viruses often acquire NRTI resistance, making it crucial to develop more-potent agents that offer profound viral suppression. Here, we report that 4'-C-cyano-2-amino-2'-deoxyadenosine (CAdA) is a novel, highly potent inhibitor of both HBV (half maximal inhibitory concentration [IC50 ] = 0.4 nM) and HIV-1 (IC50 = 0.4 nM). In contrast, the approved anti-HBV NRTI, entecavir (ETV), potently inhibits HBV (IC50 = 0.7 nM), but is much less active against HIV-1 (IC50 = 1,000 nM). Similarly, the highly potent HIV-1 inhibitor, 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA; IC50 = 0.3 nM) is less active against HBV (IC50 = 160 nM). Southern analysis using Huh-7 cells transfected with HBV-containing plasmids demonstrated that CAdA was potent against both wild-type (IC50 = 7.2 nM) and ETV-resistant HBV (IC50 = 69.6 nM for HBVETV-RL180M/S202G/M204V), whereas ETV failed to reduce HBVETV-RL180M/S202G/M204V DNA even at 1 µM. Once-daily peroral administration of CAdA reduced HBVETV-RL180M/S202G/M204V viremia (P = 0.0005) in human-liver-chimeric/ HBVETV-RL180M/S202G/M204V-infected mice, whereas ETV completely failed to reduce HBVETV-RL180M/S202G/M204V viremia. None of the mice had significant drug-related body-weight or serum human-albumin concentration changes. Molecular modeling suggests that a shallower HBV-RT hydrophobic pocket at the polymerase active site can better accommodate the slightly shorter 4'-cyano of CAdA-triphosphate (TP), but not the longer 4'-ethynyl of EFdA-TP. In contrast, the deeper HIV-1-RT pocket can efficiently accommodate the 4'-substitutions of both NRTIs. The ETV-TP's cyclopentyl ring can bind more efficiently at the shallow HBV-RT binding pocket. CONCLUSION: These data provide insights on the structural and functional associations of HBV- and HIV-1-RTs and show that CAdA may offer new therapeutic options for HBV patients.


Assuntos
Desoxiadenosinas/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Animais , Farmacorresistência Viral , Guanina/análogos & derivados , Guanina/farmacologia , HIV-1/efeitos dos fármacos , Camundongos
4.
J Org Chem ; 81(7): 2827-36, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27009432

RESUMO

A method for the diastereoselective synthesis of 6″-(Z)- and 6″-(E)-fluorinated analogues of the anti-HBV agent entecavir has been developed. Construction of the methylenecyclopentane skeleton of the target molecules has been accomplished by radical-mediated 5-exo-dig cyclization of the selenides 6 and 15 having the phenylsulfanylethynyl structure as a radical accepting moiety. In the radical reaction of the TBS-protected precursor 6, (Z)-anti-12 was formed as a major product. On the other hand, TIPS-protected 15 gave (E)-anti-12. The sulfur-extrusive stannylation of anti-12 furnished a mixture of geometric isomers of the respective vinylstannane, whereas benzoyl-protected 17 underwent the stannylation in the manner of retention of configuration. Following XeF2-mediated fluorination, introduction of the purine base and deoxygenation of the resulting carbocyclic guanosine gave the target (E)- and (Z)-3 after deprotection. Evaluation of the anti-HBV activity of 3 revealed that fluorine-substitution at the 6″-position of entecavir gave rise to a reduction in the cytotoxicity in HepG2 cells with retention of the antiviral activity.


Assuntos
Antivirais/síntese química , Guanina/análogos & derivados , Guanosina/química , HIV-1/efeitos dos fármacos , Células Hep G2/química , Antivirais/química , Antivirais/farmacologia , Guanina/síntese química , Guanina/química , Guanina/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Estereoisomerismo , Relação Estrutura-Atividade
5.
Vet Res Commun ; 46(2): 447-457, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34988875

RESUMO

Canine hemangiosarcoma (HSA) has an extremely poor prognosis, making it necessary to develop new systemic treatment methods. MicroRNA-214 (miR-214) is one of many microRNAs (miRNA) that can induce apoptosis in HSA cell lines. Synthetic miR-214 (miR-214/5AE), which showed higher cytotoxicity and greater nuclease resistance than mature miR-214, has been developed for clinical application. In this study, we evaluated the effects of miR-214/5AE on stage 2 HSA in a mouse model. Mice intraperitoneally administered with miR-214/5AE (5AE group) had significantly fewer intraperitoneal dissemination tumor foci (median number: 72.5 vs. 237.5; p < 0.05) and a lower median foci weight (0.26 g vs. 0.61 g; p < 0.05). Mice in the 5AE group had increased expression of p53 and cleaved caspase-3, and a significantly lower proportion of Ki-67-positive cells, than those in the non-specific miR group. Notably, no significant side effects were observed. These results indicate that intraperitoneal administration of miR-214/5AE exhibits antitumor effects in an intraperitoneal dissemination mouse model of HSA by inducing apoptosis and suppressing cell proliferation. These results provide a basis for future studies on the antitumor effect of miR-214/5AE for HSA.


Assuntos
Doenças do Cão , Hemangiossarcoma , MicroRNAs , Doenças dos Roedores , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Cães , Regulação Neoplásica da Expressão Gênica , Hemangiossarcoma/tratamento farmacológico , Hemangiossarcoma/genética , Hemangiossarcoma/veterinária , Camundongos , MicroRNAs/genética , Doenças dos Roedores/genética
6.
Sci Rep ; 10(1): 3021, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080249

RESUMO

Chronic hepatitis B virus (HBV) infection is a major public health problem that affects millions of people worldwide. Nucleoside analogue reverse transcriptase (RT) inhibitors, such as entecavir (ETV) and lamivudine (3TC), serve as crucial anti-HBV drugs. However, structural studies of HBV RT have been hampered due to its unexpectedly poor solubility. Here, we show that human immunodeficiency virus type-1 (HIV-1) with HBV-associated amino acid substitutions Y115F/F116Y/Q151M in its RT (HIVY115F/F116Y/Q151M) is highly susceptible to ETV and 3TC. Additionally, we experimentally simulated previously reported ETV/3TC resistance for HBV using HIVY115F/F116Y/Q151M with F160M/M184V (L180M/M204V in HBV RT) substituted. We determined crystal structures for HIV-1 RTY115F/F116Y/Q151M:DNA complexed with 3TC-triphosphate (3TC-TP)/ETV-triphosphate (ETV-TP)/dCTP/dGTP. These structures revealed an atypically tight binding conformation of 3TC-TP, where the Met184 side-chain is pushed away by the oxathiolane of 3TC-TP and exocyclic methylene of ETV-TP. Structural analysis of RTY115F/F116Y/Q151M/F160M/M184V:DNA:3TC-TP also demonstrated that the loosely bound 3TC-TP is misaligned at the active site to prevent a steric clash with the side chain γ-methyl of Val184. These findings shed light on the common structural mechanism of HBV and HIV-1 resistance to 3TC and ETV and should aid in the design of new agents to overcome drug resistance to 3TC and ETV.


Assuntos
Farmacorresistência Viral/efeitos dos fármacos , Guanina/análogos & derivados , HIV-1/efeitos dos fármacos , Vírus da Hepatite B/efeitos dos fármacos , Lamivudina/química , Lamivudina/farmacologia , Nucleosídeos/análogos & derivados , Antivirais/química , Antivirais/farmacologia , Sequência de Bases , Cristalografia por Raios X , DNA Viral/química , Nucleotídeos de Desoxicitosina , Nucleotídeos de Desoxiguanina , Desenho de Fármacos , Guanina/química , Guanina/farmacologia , HIV-1/genética , Mutação/genética , Conformação de Ácido Nucleico , DNA Polimerase Dirigida por RNA/genética , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia
7.
Artigo em Inglês | MEDLINE | ID: mdl-31514570

RESUMO

Hepatitis B virus (HBV) infection is a major worldwide health problem that requires the development of improved antiviral therapies. Here, a series of 4'-Azido-thymidine/4'-Azido-2'-deoxy-5-methylcytidine derivatives (6, 10-15) were synthesized, and their anti-HBV activities evaluated. Compounds 10-15 were synthesized via an SNAr reaction of 18, in which the 4-position of the thymine moiety was activated as the 2,4,6-triisopropylbenzenesulfonate. Compounds 11-15 showed no antiviral activity. However, 4'-Azido thymidine (6) and 4'-Azido-2'-deoxy-5-methylcytidine (10) displayed significant anti-HBV activity (EC50 = 0.63 and 5.99 µM, respectively) with no detectable cytotoxicity against MT-2 cells up to 100 µM.


Assuntos
Antivirais/farmacologia , Citidina/análogos & derivados , Zidovudina/análogos & derivados , Antivirais/síntese química , Antivirais/química , Citidina/síntese química , Citidina/química , Citidina/farmacologia , Células Hep G2 , Vírus da Hepatite B/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Conformação Molecular , Estereoisomerismo , Zidovudina/síntese química , Zidovudina/química , Zidovudina/farmacologia
8.
Antimicrob Agents Chemother ; 53(9): 3887-93, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19546363

RESUMO

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA), a recently discovered nucleoside reverse transcriptase inhibitor, exhibits activity against a wide spectrum of wild-type and multidrug-resistant clinical human immunodeficiency virus type 1 (HIV-1) isolates (50% effective concentration, 0.0001 to 0.001 microM). In the present study, we used human peripheral blood mononuclear cell-transplanted, HIV-1-infected NOD/SCID/Janus kinase 3 knockout mice for in vivo evaluation of the anti-HIV activity of EFdA. Administration of EFdA decreased the replication and cytopathic effects of HIV-1 without identifiable adverse effects. In phosphate-buffered saline (PBS)-treated mice, the CD4+/CD8+ cell ratio in the spleen was low (median, 0.04; range, 0.02 to 0.49), while that in mice receiving EFdA was increased (median, 0.65; range, 0.57 to 1.43). EFdA treatment significantly suppressed the amount of HIV-1 RNA (median of 9.0 x 10(2) copies/ml [range, 8.1 x 10(2) to 1.1 x 10(3) copies/ml] versus median of 9.9 x 10(4) copies/ml [range, 8.1 x 10(2) to 1.1 x 10(3) copies/ml]; P < 0.001), the p24 level in plasma (2.5 x 10(3) pg/ml [range, 8.2 x 10(2) to 5.6 x 10(3) pg/ml] versus 2.8 x 10(2) pg/ml [range, 8.2 x 10(1) to 6.3 x 10(2) pg/ml]; P < 0.001), and the percentage of p24-expressing cells in the spleen (median of 1.90% [range, 0.33% to 3.68%] versus median of 0.11% [range, 0.00% to 1.00%]; P = 0.003) in comparison with PBS-treated mice. These data suggest that EFdA is a promising candidate for a new age of HIV-1 chemotherapy and should be developed further as a potential therapy for individuals with multidrug-resistant HIV-1 variants.


Assuntos
Desoxiadenosinas/farmacologia , HIV-1/efeitos dos fármacos , Janus Quinase 3/genética , Inibidores da Transcriptase Reversa/farmacologia , Animais , Desoxiadenosinas/química , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/transplante , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Estrutura Molecular , Inibidores da Transcriptase Reversa/química
9.
Int J Biochem Cell Biol ; 40(11): 2410-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18487070

RESUMO

One of the formidable challenges in therapy of infections by human immunodeficiency virus (HIV) is the emergence of drug-resistant variants that attenuate the efficacy of highly active antiretroviral therapy (HAART). We have recently introduced 4'-ethynyl-nucleoside analogs as nucleoside reverse transcriptase inhibitors (NRTIs) that could be developed as therapeutics for treatment of HIV infections. In this study, we present 2'-deoxy-4'-C-ethynyl-2-fluoroadenosine (EFdA), a second generation 4'-ethynyl inhibitor that exerted highly potent activity against wild-type HIV-1 (EC50 approximately 0.07 nM). EFdA retains potency toward many HIV-1 resistant strains, including the multi-drug resistant clone HIV-1A62V/V75I/F77L/F116Y/Q151M. The selectivity index of EFdA (cytotoxicity/inhibitory activity) is more favorable than all approved NRTIs used in HIV therapy. Furthermore, EFdA efficiently inhibited clinical isolates from patients heavily treated with multiple anti-HIV-1 drugs. EFdA appears to be primarily phosphorylated by the cellular 2'-deoxycytidine kinase (dCK) because: (a) the antiviral activity of EFdA was reduced by the addition of dC, which competes nucleosides phosphorylated by the dCK pathway, (b) the antiviral activity of EFdA was significantly reduced in dCK-deficient HT-1080/Ara-Cr cells, but restored after dCK transduction. Further, unlike other dA analogs, EFdA is completely resistant to degradation by adenosine deaminase. Moderate decrease in susceptibility to EFdA is conferred by a combination of three RT mutations (I142V, T165R, and M184V) that result in a significant decrease of viral fitness. Molecular modeling analysis suggests that the M184V/I substitutions may reduce anti-HIV activity of EFdA through steric hindrance between its 4'-ethynyl moiety and the V/I184 beta-branched side chains. The present data suggest that EFdA, is a promising candidate for developing as a therapeutic agent for the treatment of individuals harboring multi-drug resistant HIV variants.


Assuntos
Desoxiadenosinas , Farmacorresistência Viral Múltipla , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Animais , Terapia Antirretroviral de Alta Atividade , Linhagem Celular , Desoxiadenosinas/química , Desoxiadenosinas/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Humanos , Modelos Moleculares , Estrutura Molecular , Replicação Viral
10.
Cell Chem Biol ; 25(10): 1268-1278.e3, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30174310

RESUMO

4'-Ethynyl-2-fluoro-2'-deoxyadenosine (EFdA/MK-8591), a nucleoside reverse transcriptase inhibitor (NRTI) under clinical trials, is a potent and promising long-acting anti-HIV type 1 (HIV-1) agent. EFdA and its derivatives possess a modified 4'-moiety and potently inhibit the replication of a wide spectrum of HIV-1 strains resistant to existing NRTIs. Here, we report that EFdA and NRTIs with a 4'-ethynyl- or 4'-cyano-moiety exerted activity against HIV-1 with an M184V mutation and multiple NRTI-resistant HIV-1s, whereas NRTIs with other moieties (e.g., 4'-methyl) did not show this activity. Structural analysis indicated that EFdA and 4'-ethynyl-NRTIs (but not other 4'-modified NRTIs), formed strong van der Waals interactions with critical amino acid residues of reverse transcriptase. Such interactions were maintained even in the presence of a broad resistance-endowing M184V substitution, thus potently inhibiting drug-resistant HIV-1 strains. These findings also explain the mechanism for the potency of EFdA and provide insights for further design of anti-HIV-1 therapeutics.


Assuntos
Domínio Catalítico/efeitos dos fármacos , Desoxiadenosinas/farmacologia , Farmacorresistência Viral , Transcriptase Reversa do HIV/genética , HIV-1/efeitos dos fármacos , Mutação Puntual , Inibidores da Transcriptase Reversa/farmacologia , Linhagem Celular , Desoxiadenosinas/química , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , Humanos , Simulação de Acoplamento Molecular , Inibidores da Transcriptase Reversa/química
11.
Sci Rep ; 8(1): 1624, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374261

RESUMO

Hepatitis B virus (HBV) reverse transcriptase (RT) is essential for viral replication and is an important drug target. Nonetheless, the notorious insolubility of HBV RT has hindered experimental structural studies and structure-based drug design. Here, we demonstrate that a Q151M substitution alone at the nucleotide-binding site (N-site) of human immunodeficiency virus type-1 (HIV-1) RT renders HIV-1 highly sensitive to entecavir (ETV), a potent nucleoside analogue RT inhibitor (NRTI) against HBV. The results suggest that Met151 forms a transient hydrophobic interaction with the cyclopentyl methylene of ETV, a characteristic hydrophobic moiety of ETV. We thus solved the crystal structures of HIV-1 RTQ151M:DNA complex with bound dGTP or ETV-triphosphate (ETV-TP). The structures revealed that ETV-TP is accommodated at the N-site slightly apart from the ribose ring of the 3'-end nucleotide, compared to the position of bound dGTP and previously reported NRTI/dNTP. In addition, the protruding methylene group of bound ETV-TP directly pushes the side-chain of Met184 backward. Met184 is a key residue that confers ETV resistance upon substitution with smaller Ile/Val. These results provide novel insights into NRTI binding to the N-site and further provide important clues for the development of novel anti-HBV/HIV-1 RT inhibitors to overcome critical drug resistance.


Assuntos
Antivirais/farmacologia , Guanina/análogos & derivados , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Vírus da Hepatite B/enzimologia , Mutação de Sentido Incorreto , Antivirais/química , Antivirais/metabolismo , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Guanina/química , Guanina/metabolismo , Guanina/farmacologia , Transcriptase Reversa do HIV/genética , HIV-1/genética , Vírus da Hepatite B/genética , Humanos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Conformação Proteica
12.
J Pharm Pharmacol ; 70(6): 723-731, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29528116

RESUMO

OBJECTIVES: 4'-cyano-2'-deoxyguanosine (CdG), a novel nucleoside analogue, has a high degree of antiviral activity against the chronic hepatitis B virus (HBV). The objective of this study was to develop an analytical method for quantitatively determining CdG levels in biological samples by liquid chromatography-mass spectrometry (LC/MS) and to investigate the pharmacokinetic properties of CdG in rats after intravenous and oral administration. METHODS: An analytical method using a UPLC system interfaced with a TOF-MS system was developed and validated. The pharmacokinetic properties after the intravenous and oral administration of CdG to rats were evaluated. In vivo pharmacokinetic interactions between CdG and entecavir were also investigated. KEY FINDINGS: A rapid, simple and selective method for the quantification of CdG in biological samples was established using LC/MS with solid-phase extraction. In vivo pharmacokinetic studies of CdG in rats demonstrated that CdG is highly bioavailable, is rapidly absorbed from the intestinal tract, is then distributed to the liver rather than kidney and is ultimately excreted via the urine in an unchanged form. The co-administration of CdG and entecavir led to pharmacokinetic interactions with each other. CONCLUSIONS: The data generated in this study provide support for the clinical development of CdG for use in the treatment of HBV.


Assuntos
Antivirais/farmacologia , Antivirais/farmacocinética , Desoxiguanosina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , Administração Intravenosa , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/análise , Cromatografia Líquida , Desoxiguanosina/administração & dosagem , Desoxiguanosina/análise , Desoxiguanosina/farmacocinética , Desoxiguanosina/farmacologia , Masculino , Ratos , Espectrometria de Massas em Tandem
13.
PLoS One ; 13(6): e0198636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874291

RESUMO

4'-cyano-2'-deoxyinosine (SK14-061a), a novel nucleoside analog based on inosine, has antiviral activity against the human immunodeficiency virus type 1 that has the ability to acquire resistance against many types of reverse transcriptase inhibitors based on nucleosides. The aim of this study was to investigate the pharmacokinetics studies after its oral administration to rats. For this purpose, we first developed and validated an analytical method for quantitatively determining SK14-061a levels in biological samples by a UPLC system interfaced with a TOF-MS system. A rapid, simple and selective method for the quantification of SK14-061a in biological samples was established using liquid chromatography mass spectrometry (LC-MS) with solid phase extraction. The pharmacokinetic properties of SK14-061a in rats after oral administration were then evaluated using this LC-MS method. SK14-061a was found to be relatively highly bioavailable, is rapidly absorbed from the intestinal tract, and is then mainly distributed to the liver and then ultimately excreted via the urine in an unchanged form. Furthermore, the simultaneous administration of SK14-061a with the nucleoside analog, entecavir, led to a significant alteration in the pharmacokinetics of SK14-061a. These results suggest that the SK14-061a has favorable pharmacokinetic properties with a high bioavailability with the potential for use in oral pharmaceutical formulations, but drug-drug interactions should also be considered.


Assuntos
Antivirais/farmacocinética , Inosina/análogos & derivados , Inosina/farmacocinética , Nitrilas/farmacocinética , Administração Oral , Animais , Antivirais/administração & dosagem , Disponibilidade Biológica , Avaliação Pré-Clínica de Medicamentos/métodos , Inosina/administração & dosagem , Absorção Intestinal , Masculino , Nitrilas/administração & dosagem , Ratos , Ratos Sprague-Dawley
14.
Nucleosides Nucleotides Nucleic Acids ; 26(10-12): 1543-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18066823

RESUMO

Working hypotheses to solve the critical problems of the existing highly active anti-retroviral therapy were proposed. The study based on the hypotheses proved the validity of the hypotheses and resulted in the development of 2'-deoxy-4'-C-ethynyl-2-fluoroadenosine, a nucleoside reverse transcriptase inhibitor, with highly potent activity against all HIV-1, very favorable toxic profiles, and stability in plasma. The nucleoside will prevent or delay the emergence of drug-resistant HIV-1 variants and be an ideal therapeutic agent for both HIV-1 and HBV infections.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Desoxiadenosinas/química , Desoxiadenosinas/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Animais , Fármacos Anti-HIV/farmacocinética , Desoxiadenosinas/farmacocinética , Humanos , Camundongos , Relação Estrutura-Atividade
15.
Nucleosides Nucleotides Nucleic Acids ; 36(7): 463-473, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28574799

RESUMO

Synthesis of a novel 2'-deoxy-guanine carbocyclic nucleoside 4 constructed with spiro[2.4]heptane core structure in the aglycon moiety was carried out. Radical-mediated 5-exo-dig mode cyclization and following cyclopropanation proceeded efficiently to furnish the spiro alcohol 10. Subsequent Mitsunobu-type glycosylation between 13 and 14, deoxygenation of the 2'-hydroxyl group of 16 and deprotection of 17 gave the title compound 4. Compound 4 demonstrated moderate anti-HBV activity (EC50 value of 0.12 ± 0.02 µM) and no cytotoxicity against HepG2 cells was observed up to 100 µM.


Assuntos
Antivirais/química , Antivirais/farmacologia , Guanina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , Heptanos/química , Antivirais/síntese química , Técnicas de Química Sintética , Guanina/síntese química , Guanina/química , Guanina/farmacologia , Relação Estrutura-Atividade
16.
Artigo em Inglês | MEDLINE | ID: mdl-26167667

RESUMO

Exomethylene acycloguanine nucleosides 4, 6 and its monophosphate derivatives 5, 7, and 8 have been synthesized. Mitsunobu-type coupling of 2-N-acetyl-6-O-diphenylcarbamoylguanine (11) with primary alcohols proceeded regioselectively to furnish the desired N(9)-substituted products in moderate yield. Evaluation of 4-8 for anti-HBV activity in HepG2 cells revealed that the phosphonate derivative 8 was found to exhibit moderated activity (EC50 value of 0.29 µM), but cytotoxicity (CC50 value of 39 µM) against the host cells was also observed.


Assuntos
Adenina/análogos & derivados , Antivirais/química , Antivirais/farmacologia , Desenho de Fármacos , Guanina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , Organofosfonatos/química , Organofosfonatos/farmacologia , Adenina/síntese química , Adenina/química , Adenina/farmacologia , Antivirais/síntese química , Guanina/síntese química , Guanina/química , Guanina/farmacologia , Células Hep G2 , Humanos , Técnicas In Vitro , Organofosfonatos/síntese química
17.
Antivir Chem Chemother ; 15(4): 169-87, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15457679

RESUMO

Extensive efforts have been made to identify nucleoside reverse transcriptase inhibitors (NRTIs). Eight NRTIs have now been approved for clinical use; however, variants of HIV-1 resistant to these antiviral agents have emerged in patients even when they are treated with combinations [highly active antiretroviral therapy (HAART)]. Thus, the development of novel compounds that are active against drug-resistant HIV-1 variants and that prevent or delay the emergence of resistant HIV-1 variants is urgently needed. Previously, 4'-C-substituted nucleosides (4'-SNs) were designed as new types of NRTIs. They were synthesized and examined as potential therapeutic agents against HIV infection. Among them, several 4'-substituted-2'-deoxynucleosides (4'-SdNs), especially those that bear an ethynyl group, were shown to be active against various laboratory and clinical HIV-1 strains including known drug-resistant variants. These results were recently reported by our collaborators. In this review, we summarize the design, synthesis and demonstrations of the anti-HIV activity of 4'-SNs, and then consider 4'-SNs as potential therapeutic agents for HIV-1.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Nucleosídeos/química , Nucleosídeos/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/uso terapêutico , Farmacorresistência Viral , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Nucleosídeos/síntese química , Nucleosídeos/uso terapêutico , Relação Estrutura-Atividade
18.
Antivir Chem Chemother ; 15(3): 161-7, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15266898

RESUMO

We investigated the potential of 4'-C-substituted nucleosides for the treatment of HIV-1 and HBV. Of the nucleosides we prepared, several 4'-C-ethynyl-2'-deoxypurine nucleosides showed the most potent anti-HIV activity. However, two candidates, 4'-C-ethynyl-2'-deoxyguanosine and 9-(2-deoxy-4-C-ethynyl-beta-D-ribo-pentofuranosyl)-2,6-diaminopurine, were very toxic during in vivo study. On the other hand, lamivudine (3TC) is known to show remarkable activity against HIV and HBV with lower cytotoxicity. Therefore, we attempted to synthesize the L-enantiomer of 4'-C-ethynyl-2'-deoxypurine nucleosides in 20-21 steps. These methods consisted of preparing 4-C-ethynyl-L-sugar, starting from D-arabinose and then condensing the L-sugar derivative with 2,6-diaminopurine. 4'-C-Ethynyl-2'-deoxyguanosine was also prepared by enzymatic deamination from the 2,6-diaminopurine derivative. The compounds' antiviral activity against HIV and HBV was then evaluated. Unfortunately, they demonstrated no activity and no cytotoxicity.


Assuntos
Infecções por HIV/tratamento farmacológico , HIV-1 , Vírus da Hepatite B , Hepatite B/tratamento farmacológico , Inibidores da Transcriptase Reversa/efeitos adversos , Inibidores da Transcriptase Reversa/síntese química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Viral/química , DNA Viral/genética , Humanos , Reação em Cadeia da Polimerase , Inibidores da Transcriptase Reversa/farmacologia , Estereoisomerismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-15200030

RESUMO

Some 4'-C-ethynyl-2'-deoxy purine nucleosides showed the most potent anti-HIV activity among the series of 4'-C-substituted 2'-deoxynucleosides whose 4'-C-substituents were methyl, ethyl, ethynyl and so on. Our hypothesis is that the smaller the substituent at the C-4' position they have, the more acceptable biological activity they show. Thus, 4'-C-cyano-2'-deoxy purine nucleosides, whose substituent is smaller than the ethynyl group, will have more potent antiviral activity. To prove our hypothesis, we planned to develop an efficient synthesis of 4'-C-cyano-2'-deoxy purine nucleosides (4'-CNdNs) and 4'-C-ethynyl-2'-deoxy purine nucleosides (4'-EdNs). Consequently, we succeeded in developing an efficient synthesis of six 2'-deoxy purine nucleosides bearing either a cyano or an ethynyl group at the C-4' position of the sugar moiety from 2'-deoxyadenosine and 2,6-diaminopurine 2'-deoxyriboside. Unfortunately, 4'-C-cyano derivatives showed lower activity against HIV-1, and two 4'-C-ethynyl derivatives suggested high toxicity in vivo.


Assuntos
Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Nucleosídeos de Purina/síntese química , Nucleosídeos de Purina/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Fármacos Anti-HIV/toxicidade , Linhagem Celular , Desenho de Fármacos , Feminino , Infecções por HIV/virologia , Humanos , Camundongos , Nucleosídeos de Purina/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA