Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(6): 2859-2869, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38289638

RESUMO

2,6-Dichlorobenzamide (BAM) is an omnipresent micropollutant in European groundwaters. Aminobacter niigataensis MSH1 is a prime candidate for biologically treating BAM-contaminated groundwater since this organism is capable of utilizing BAM as a carbon and energy source. However, detailed information on the BAM degradation kinetics by MSH1 at trace concentrations is lacking, while this knowledge is required for predicting and optimizing the degradation process. Contaminating assimilable organic carbon (AOC) in media makes the biodegradation experiment a mixed-substrate assay and hampers exploration of pollutant degradation at trace concentrations. In this study, we examined how the BAM concentration affects MSH1 growth and BAM substrate utilization kinetics in a AOC-restricted background to avoid mixed-substrate conditions. Conventional Monod kinetic models were unable to predict kinetic parameters at low concentrations from kinetics determined at high concentrations. Growth yields on BAM were concentration-dependent and decreased substantially at trace concentrations; i.e., growth of MSH1 diminished until undetectable levels at BAM concentrations below 217 µg-C/L. Nevertheless, BAM degradation continued. Decreasing growth yields at lower BAM concentrations might relate to physiological adaptations to low substrate availability or decreased expression of downstream steps of the BAM catabolic pathway beyond 2,6-dichlorobenzoic acid (2,6-DCBA) that ultimately leads to Krebs cycle intermediates for growth and energy conservation.


Assuntos
Benzamidas , Carbono , Phyllobacteriaceae , Biodegradação Ambiental , Benzamidas/metabolismo , Carbono/metabolismo
2.
Environ Sci Technol ; 54(1): 266-275, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31738056

RESUMO

Soil biodegradable mulch films composed of the polyester polybutylene adipate-co-terephthalate (PBAT) are being increasingly used in agriculture. Analytical methods to quantify PBAT in field soils are needed to assess its soil occurrence and fate. Here, we report an analytical method for PBAT in soils that couples Soxhlet extraction or accelerated solvent extraction (ASE) with quantitative protonnuclear magnetic resonance (q-1H NMR) spectroscopy detection. The 1H NMR peak areas of aromatic PBAT protons increased linearly with PBAT concentrations dissolved in deuterated chloroform (CDCl3), demonstrating accurate quantitation of PBAT by q-1H NMR. Spike-recovery experiments involving PBAT addition to model sorbents and soils showed increased PBAT extraction efficiencies into chloroform (CHCl3) with methanol (MeOH) as cosolvent, consistent with MeOH competitively displacing PBAT from H-bond donating sites on mineral surfaces. Systematic variations in solvent composition and temperatures in ASE revealed quantitative PBAT extraction from soil with 90/10 volume % CHCl3/MeOH at 110-120 °C. Both Soxhlet extraction and ASE resulted in the complete recovery of PBAT added to a total of seven agricultural soils covering a range of physicochemical properties, independent of whether PBAT was added to soils dissolved in CHCl3, as film, or as particles. Recovery was also complete for PBAT added to soil in the form of a commercial soil biodegradable mulch film with coextractable polylactic acid (PLA). The presented analytical method enables accurate quantification and biodegradation monitoring of PBAT in agricultural field soils.


Assuntos
Poliésteres , Solo , Agricultura , Biodegradação Ambiental , Temperatura
3.
Chimia (Aarau) ; 74(3): 108-114, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32197667

RESUMO

Enzymatic oxygenations initiate biodegradation processes of many organic soil and water contaminants. Even though many biochemical aspects of oxygenation reactions are well-known, quantifying rates of oxidative contaminant removal as well as the extent of oxygenation remains a major challenge. Because enzymes use different strategies to activate O2, reactions leading to substrate oxygenation are not necessarily limiting the rate of contaminant removal. Moreover, oxygenases react along unproductive pathways without substrate metabolism leading to O2 uncoupling. Here, we identify the critical features of the catalytic cycles of selected oxygenases that determine rates and extents of biodegradation. We focus most specifically on Rieske dioxygenases, a subfamily of mononuclear non-heme ferrous iron oxygenases, because of their ability to hydroxylate unactivated aromatic structures and thus initiate the transformation of the most persistent organic contaminants. We illustrate that the rate-determining steps in their catalytic cycles range from O2 activation to substrate hydroxylation, depending on the extent of O-O cleavage that is required for generating the reactive Fe-oxygen species. The extent of O2 uncoupling, on the other hand, is highly substrate-specific and potentially modulated by adaptive responses to oxidative stress. Understanding the kinetic mechanisms of oxygenases will be key to assess organic contaminant biotransformation quantitatively.


Assuntos
Oxigênio/metabolismo , Dioxigenases , Hidroxilação , Cinética , Oxirredução , Oxigenases
4.
Environ Sci Technol ; 53(13): 7419-7431, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31132243

RESUMO

Contamination of soils and sediments with the highly persistent hexachlorocyclohexanes (HCHs) continues to be a threat for humans and the environment. Despite the existence of bacteria capable of biodegradation and cometabolic transformation of HCH isomers, such processes occur over time scales of decades and are thus challenging to assess. Here, we explored the use of compound-specific isotope analysis (CSIA) to track the aerobic biodegradation and biotransformation pathways of the most prominent isomers, namely, (-)-α-, (+)-α-, ß-, γ-, and δ-HCH, through changes of their C and H isotope composition in assays of LinA2 and LinB enzymes. Dehydrochlorination of (+)-α-, γ-, and δ-HCH catalyzed by LinA2 was subject to substantial C and H isotope fraction with apparent 13C- and 2H-kinetic isotope effects (AKIEs) of up to 1.029 ± 0.001 and 6.7 ± 2.9, respectively, which are indicative of bimolecular eliminations. Hydrolytic dechlorination of δ-HCH by LinB exhibited even larger C but substantially smaller H isotope fractionation with 13C- and 2H-AKIEs of 1.073 ± 0.006 and 1.41 ± 0.04, respectively, which are typical for nucleophilic substitutions. The systematic evaluation of isomer-specific phenomena showed that, in addition to contaminant uptake limitations, diffusion-limited turnover ((-)-α-HCH), substrate dissolution (ß-HCH), and potentially competing reactions catalyzed by constitutively expressed enzymes might bias the assessment of HCH biodegradation by CSIA at contaminated sites.


Assuntos
Halogenação , Hexaclorocicloexano , Biodegradação Ambiental , Biotransformação , Isomerismo
5.
Environ Sci Technol ; 53(5): 2353-2363, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30674184

RESUMO

Compound-specific isotope analysis (CSIA) can provide insights into the natural attenuation processes of hexachlorocyclohexanes (HCHs), an important class of persistent organic pollutants. However, the interpretation of HCH stable isotope fractionation is conceptually challenging. HCHs exist as different conformers that can be converted into each other, and the enzymes responsible for their transformation discriminate among those HCH conformers. Here, we investigated the enzyme specificity of apparent 13C- and 2H-kinetic isotope effects (AKIEs) associated with the dehydrochlorination of γ-HCH (lindane) by two variants of the lindane dehydrochlorinases LinA1 and LinA2. While LinA1 and LinA2 attack γ-HCH at different trans-1,2-diaxial H-C-C-Cl moieties, the observed C and H isotope fractionation was large, typical for bimolecular eliminations, and was not affected by conformational mobility. 13C-AKIEs for transformation by LinA1 and LinA2 were the same (1.024 ± 0.001 and 1.025 ± 0.001, respectively), whereas 2H-AKIEs showed minor differences (2.4 ± 0.1 and 2.6 ± 0.1). Variations of isotope effects between LinA1 and LinA2 are small and in the range reported for different degrees of C-H bond cleavage in transition states of dehydrochlorination reactions. The large C and H isotope fractionation reported here for experiments with pure enzymes contrasts with previous observations from whole cell experiments and suggests that specific uptake processes by HCH-degrading microorganisms might modulate the observable HCH isotope fractionation at contaminated sites.


Assuntos
Hexaclorocicloexano , Liases , Isótopos , Cinética
6.
Environ Sci Technol ; 53(17): 10146-10156, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386350

RESUMO

2,6-Dichlorobenzamide (BAM) is a major groundwater micropollutant posing problems for drinking water treatment plants (DWTPs) that depend on groundwater intake. Aminobacter sp. MSH1 uses BAM as the sole source of carbon, nitrogen, and energy and is considered a prime biocatalyst for groundwater bioremediation in DWTPs. Its use in bioremediation requires knowledge of its BAM-catabolic pathway, which is currently restricted to the amidase BbdA converting BAM into 2,6-dichlorobenzoic acid (2,6-DCBA) and the monooxygenase BbdD transforming 2,6-DCBA into 2,6-dichloro-3-hydroxybenzoic acid. Here, we show that the 2,6-DCBA catabolic pathway is unique and differs substantially from catabolism of other chlorobenzoates. BbdD catalyzes a second hydroxylation, forming 2,6-dichloro-3,5-dihydroxybenzoic acid. Subsequently, glutathione-dependent dehalogenases (BbdI and BbdE) catalyze the thiolytic removal of the first chlorine. The remaining chlorine is then removed hydrolytically by a dehalogenase of the α/ß hydrolase superfamily (BbdC). BbdC is the first enzyme in that superfamily associated with dehalogenation of chlorinated aromatics and appears to represent a new subtype within the α/ß hydrolase dehalogenases. The activity of BbdC yields a unique trihydroxylated aromatic intermediate for ring cleavage that is performed by an extradiol dioxygenase (BbdF) producing 2,4,6-trioxoheptanedioic acid, which is likely converted to Krebs cycle intermediates by BbdG.


Assuntos
Água Subterrânea , Phyllobacteriaceae , Benzamidas , Biodegradação Ambiental , Clorobenzoatos
7.
Environ Sci Technol ; 53(5): 2472-2481, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30726677

RESUMO

Biodegradable polyesters are being increasingly used to replace conventional, nondegradable polymers in agricultural applications such as plastic film for mulching. For many of these applications, poly(butylene adipate- co-terephthalate) (PBAT) is a promising biodegradable material. However, PBAT is also susceptible to photochemical transformations. To better understand how photochemistry affects the biodegradability of PBAT, we irradiated blown, nonstabilized, transparent PBAT films and studied their enzymatic hydrolysis, which is considered the rate-limiting step in polyester biodegradation. In parallel, we characterized the irradiated PBAT films by dynamic mechanical thermal analysis. The rate of enzymatic PBAT hydrolysis decreased when the density of light-induced cross-links within PBAT exceeded a certain threshold. Mass-spectrometric analysis of the enzymatic hydrolysis products of irradiated PBAT films provided evidence for radical-based cross-linking of two terephthalate units that resulted in the formation of benzophenone-like molecules. In a proof-of-principle experiment, we demonstrated that the addition of photostabilizers to PBAT films mitigated the negative effect of UV irradiation on the enzymatic hydrolyzability of PBAT. This work advances the understanding of light-induced changes on the enzyme-mediated hydrolysis of aliphatic-aromatic polyesters and will therefore have important implications for the development of biodegradable plastics.


Assuntos
Adipatos , Alcenos , Ácidos Ftálicos , Poliésteres
8.
Appl Environ Microbiol ; 84(4)2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29222099

RESUMO

Pinoresinol is a dimer of two ß-ß'-linked coniferyl alcohol molecules. It is both a plant defense molecule synthesized through the shikimic acid pathway and a representative of several ß-ß-linked dimers produced during the microbial degradation of lignin in dead plant material. Until now, little has been known about the bacterial catabolism of such dimers. Here we report the isolation of the efficient (+)-pinoresinol-mineralizing Pseudomonas sp. strain SG-MS2 and its catabolic pathway. Degradation of pinoresinol in this strain is inducible and proceeds via a novel oxidative route, which is in contrast to the previously reported reductive transformation by other bacteria. Based on enzyme assays and bacterial growth, cell suspension, and resting cell studies, we provide conclusive evidence that pinoresinol degradation in strain SG-MS2 is initiated by benzylic hydroxylation, generating a hemiketal via a quinone methide intermediate, which is then hydrated at the benzylic carbon by water. The hemiketal, which stays in equilibrium with the corresponding keto alcohol, undergoes an aryl-alkyl cleavage to generate a lactone and 2-methoxyhydroquinone. While the fate of 2-methoxyhydroquinone is not investigated further, it is assumed to be assimilated by ring cleavage. The lactone is further metabolized via two routes, namely, lactone ring cleavage and benzylic hydroxylation via a quinone methide intermediate, as described above. The resulting hemiketal again exists in equilibrium with a keto alcohol. Our evidence suggests that both routes of lactone metabolism lead to vanillin and vanillic acid, which we show can then be mineralized by strain SG-MS2.IMPORTANCE The oxidative catabolism of (+)-pinoresinol degradation elucidated here is fundamentally different from the reductive cometabolism reported for two previously characterized bacteria. Our findings open up new opportunities to use lignin for the biosynthesis of vanillin, a key flavoring agent in foods, beverages, and pharmaceuticals, as well as various new lactones. Our work also has implications for the study of new pinoresinol metabolites in human health. The enterodiol and enterolactone produced through reductive transformation of pinoresinol by gut microbes have already been associated with decreased risks of cancer and cardiovascular diseases. The metabolites from oxidative metabolism we find here also deserve attention in this respect.


Assuntos
Calcificação Fisiológica/fisiologia , Furanos/metabolismo , Lignanas/metabolismo , Redes e Vias Metabólicas , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Benzaldeídos/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Lignina/metabolismo , Minerais/metabolismo , Pseudomonas/genética
9.
Environ Sci Technol ; 52(1): 52-60, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29182849

RESUMO

To optimize removal of organic micropollutants from the water cycle, understanding the processes during activated sludge treatment is essential. In this study, we hypothesize that aliphatic amines, which are highly abundant among organic micropollutants, are partly removed from the water phase in activated sludge through ion trapping in protozoa. In ion trapping, which has been extensively investigated in medical research, the neutral species of amine-containing compounds diffuse through the cell membrane and further into acidic vesicles present in eukaryotic cells such as protozoa. There they become trapped because diffusion of the positively charged species formed in the acidic vesicles is strongly hindered. We tested our hypothesis with two experiments. First, we studied the distribution of the fluorescent amine acridine orange in activated sludge by confocal fluorescence imaging. We observed intense fluorescence in distinct compartments of the protozoa, but not in the bacterial biomass. Second, we investigated the distribution of 12 amine-containing and eight control micropollutants in both regular activated sludge and sludge where the protozoa had been inactivated. In contrast to most control compounds, the amine-containing micropollutants displayed a distinctly different behavior in the noninhibited sludge compared to the inhibited one: (i) more removal from the liquid phase; (ii) deviation from first-order kinetics for the removal from the liquid phase; and (iii) higher amounts in the solid phase. These results provide strong evidence that ion trapping in protozoa occurs and that it is an important removal mechanism for amine-containing micropollutants in batch experiments with activated sludge that has so far gone unnoticed. We expect that our findings will trigger further investigations on the importance of this process in full-scale wastewater treatment systems, including its relevance for accumulation of ammonium.


Assuntos
Esgotos , Poluentes Químicos da Água , Aminas , Cinética , Eliminação de Resíduos Líquidos , Águas Residuárias
10.
Appl Microbiol Biotechnol ; 102(18): 7963-7979, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29984394

RESUMO

Aminobacter sp. MSH1 uses the groundwater micropollutant 2,6-dichlorobenzamide (BAM) as sole source of carbon and energy. In the first step, MSH1 converts BAM to 2,6-dichlorobenzoic acid (2,6-DCBA) by means of the BbdA amidase encoded on the IncP-1ß plasmid pBAM1. Information about the genes and degradation steps involved in 2,6-DCBA metabolism in MSH1 or any other organism is currently lacking. Here, we show that the genes for 2,6-DCBA degradation in strain MSH1 reside on a second catabolic plasmid in MSH1, designated as pBAM2. The complete sequence of pBAM2 was determined revealing that it is a 53.9 kb repABC family plasmid. The 2,6-DCBA catabolic genes on pBAM2 are organized in two main clusters bordered by IS elements and integrase genes and encode putative functions like Rieske mono-/dioxygenase, meta-cleavage dioxygenase, and reductive dehalogenases. The putative mono-oxygenase encoded by the bbdD gene was shown to convert 2,6-DCBA to 3-hydroxy-2,6-dichlorobenzoate (3-OH-2,6-DCBA). 3-OH-DCBA was degraded by wild-type MSH1 and not by a pBAM2-free MSH1 variant indicating that it is a likely intermediate in the pBAM2-encoded DCBA catabolic pathway. Based on the activity of BbdD and the putative functions of the other catabolic genes on pBAM2, a metabolic pathway for BAM/2,6-DCBA in strain MSH1 was suggested.


Assuntos
Benzamidas/metabolismo , Clorobenzoatos/metabolismo , Água Subterrânea/microbiologia , Phyllobacteriaceae/metabolismo , Plasmídeos/genética , Poluentes Químicos da Água/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Dioxigenases/genética , Dioxigenases/metabolismo , Phyllobacteriaceae/enzimologia , Phyllobacteriaceae/genética , Plasmídeos/metabolismo
11.
Environ Sci Technol ; 51(8): 4358-4367, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28140581

RESUMO

Biodegradable polyesters have the potential to replace nondegradable, persistent polymers in numerous applications and thereby alleviate plastic accumulation in the environment. Herein, we present an analytical approach to study enzymatic hydrolysis of polyesters, the key step in their overall biodegradation process. The approach is based on embedding fluorescein dilaurate (FDL), a fluorogenic ester substrate, into the polyester matrix and on monitoring the enzymatic cohydrolysis of FDL to fluorescein during enzymatic hydrolysis of the polyester. We validated the approach against established techniques using FDL-containing poly(butylene adipate) films and Fusarium solani cutinase (FsC). Implemented on a microplate reader platform, the FDL-based approach enabled sensitive and high-throughput analysis of the enzymatic hydrolysis of eight aliphatic polyesters by two fungal esterases (FsC and Rhizopus oryzae lipase) at different temperatures. While hydrolysis rates for both enzymes increased with decreasing differences between the polyester melting temperatures and the experimental temperatures, this trend was more pronounced for the lipase than the cutinase. These trends in rates could be ascribed to a combination of temperature-dependent polyester chain flexibility and accessibility of the enzyme active site. The work highlights the capability of the FDL-based approach to be utilized in both screening and mechanistic studies of enzymatic polyester hydrolysis.


Assuntos
Lipase/metabolismo , Poliésteres/metabolismo , Biodegradação Ambiental , Hidrólise , Polímeros/química
12.
Environ Sci Technol ; 51(13): 7476-7485, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28538100

RESUMO

Biodegradable polyesters have a large potential to replace persistent polymers in numerous applications and to thereby reduce the accumulation of plastics in the environment. Ester hydrolysis by extracellular carboxylesterases is considered the rate-limiting step in polyester biodegradation. In this work, we systematically investigated the effects of polyester and carboxylesterase structure on the hydrolysis of nanometer-thin polyester films using a quartz-crystal microbalance with dissipation monitoring. Hydrolyzability increased with increasing polyester-chain flexibility as evidenced from differences in the hydrolysis rates and extents of aliphatic polyesters varying in the length of their dicarboxylic acid unit and of poly(butylene adipate-co-terephthalate) (PBAT) polyesters varying in their terephthalate-to-adipate ratio by Rhizopus oryzae lipase and Fusarium solani cutinase. Nanoscale nonuniformities in the PBAT films affected enzymatic hydrolysis and were likely caused by domains with elevated terephthalate contents that impaired enzymatic hydrolysis. Yet, the cutinase completely hydrolyzed all PBAT films, including films with a terephthalate-to-adipate molar ratio of one, under environmentally relevant conditions (pH 6, 20 °C). A comparative analysis of the hydrolysis of two model polyesters by eight different carboxylesterases revealed increasing hydrolysis with increasing accessibility of the enzyme active site. Therefore, this work highlights the importance of both polyester and carboxylesterase structure to enzymatic polyester hydrolysis.


Assuntos
Poliésteres , Biodegradação Ambiental , Domínio Catalítico , Hidrólise , Lipase , Polímeros
13.
Biodegradation ; 28(2-3): 171-180, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28251436

RESUMO

LinA-type1 and LinA-type2 are two well-characterized variants of the enzyme 'hexachlorocyclohexane (HCH)-dehydrochlorinase'. They differ from each other at ten amino acid positions and exhibit differing enantioselectivity for the transformation of the (-) and (+) enantiomers of α-HCH. Amino acids responsible for this enantioselectivity, however, are not known. An in silico docking analysis identified four amino acids (K20, L96, A131, and T133) in LinA-type1 that could be involved in selective binding of the substrates. Experimental studies with constructed mutant enzymes revealed that a combined presence of three amino acid changes in LinA-type1, i.e. K20Q, L96C, and A131G, caused a reversal in its preference from the (-) to the (+) enantiomer of α-HCH. This preference was enhanced by the additional amino acid change T133 M. Presence of these four changes also caused the reversal of enantioselectivity of LinA-type1 for δ-HCH, and ß-, γ-, and δ-pentachlorocyclohexens. Thus, the residues K20, L96, A131, and T133 in LinA-type1 and the residues Q20, C96, G131, and M133 in LinA-type 2 appear to be important determinants for the enantioselectivity of LinA enzymes.


Assuntos
Aminoácidos/química , Hexaclorocicloexano/química , Hexaclorocicloexano/metabolismo , Liases/química , Liases/metabolismo , Biodegradação Ambiental , Cromatografia Gasosa , Liases/genética , Proteínas Mutantes/metabolismo , Mutação/genética , Estereoisomerismo , Relação Estrutura-Atividade
14.
Rapid Commun Mass Spectrom ; 30(6): 684-90, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-26864520

RESUMO

RATIONALE: Oxygen isotope fractionation of molecular O2 is an important process for the study of aerobic metabolism, photosynthesis, and formation of reactive oxygen species. The latter is of particular interest for investigating the mechanism of enzyme-catalyzed reactions, such as the oxygenation of organic pollutants, which is an important detoxification mechanism. METHODS: We developed a simple method to measure the δ(18) O values of dissolved O2 in small samples using automated split injection for gas chromatography coupled to isotope ratio mass spectrometry (GC/IRMS). After creating a N2 headspace, the dissolved O2 partitions from aqueous solution to the headspace, from which it can be injected into the gas chromatograph. RESULTS: In aqueous samples of 10 mL and in diluted air samples, we quantified the δ(18) O values at O2 concentrations of 16 µM and 86 µM, respectively. The chromatographic separation of O2 and N2 with a molecular sieve column made it possible to use N2 as the headspace gas for the extraction of dissolved O2 from water. We were therefore able to apply a rigorous δ(18) O blank correction for the quantification of (18) O/(16) O ratios in 20 nmol of injected O2 . CONCLUSIONS: The successful quantification of (18) O-kinetic isotope effects associated with enzymatic and chemical reduction of dissolved O2 illustrates how the proposed method can be applied for studying enzymatic O2 activation mechanisms in a variety of (bio)chemical processes.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Isótopos de Oxigênio/análise , Glucose Oxidase/metabolismo , Ferro , Modelos Químicos , Oxirredução , Reprodutibilidade dos Testes
15.
Environ Sci Technol ; 50(1): 197-206, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26599203

RESUMO

Cleavage of ester bonds by extracellular microbial hydrolases is considered a key step during the breakdown of biodegradable polyester materials in natural and engineered systems. Here we present a novel analytical approach for simultaneous detection of changes in the masses and rigidities of polyester thin films during enzymatic hydrolysis using a Quartz Crystal Microbalance with Dissipation monitoring (QCM-D). In experiments with poly(butylene succinate) (PBS) and the lipase of Rhizopus oryzae (RoL), we detected complete hydrolysis of PBS thin films at pH 5 and 40 °C that proceeded through soft and water-rich film intermediates. Increasing the temperature from 20 to 40 °C resulted in a larger increase of the enzymatic hydrolysis rate of PBS than of nonpolymeric dibutyl adipate. This finding was ascribed to elevated accessibility of ester bonds to the catalytic site of RoL due to increasing polyester chain mobility. When the pH of the solution was changed from 5 to 7, initial hydrolysis rates were little affected, while a softer film intermediate that lead to incomplete film hydrolysis was formed. Hydrolysis dynamics of PBS, poly(butylene adipate), poly(lactic acid), and poly(ethylene terephthalate) in assays with RoL showed distinct differences that we attribute to differences in the polyester structure.


Assuntos
Reatores Biológicos , Lipase/metabolismo , Poliésteres , Proteínas Fúngicas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Poliésteres/análise , Poliésteres/química , Poliésteres/metabolismo , Técnicas de Microbalança de Cristal de Quartzo
16.
Environ Sci Technol ; 50(13): 6708-16, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-26895026

RESUMO

Compound-specific isotope analysis (CSIA) is a promising approach for tracking biotransformation of organic pollutants, but isotope fractionation associated with aromatic oxygenations is only poorly understood. We investigated the dioxygenation of a series of nitroaromatic compounds to the corresponding catechols by two enzymes, namely, nitrobenzene and 2-nitrotoluene dioxygenase (NBDO and 2NTDO) to elucidate the enzyme- and substrate-specificity of C and H isotope fractionation. While the apparent (13)C- and (2)H-kinetic isotope effects of nitrobenzene, nitrotoluene isomers, 2,6-dinitrotoluene, and naphthalene dioxygenation by NBDO varied considerably, the correlation of C and H isotope fractionation revealed a common mechanism for nitrobenzene and nitrotoluenes. Similar observations were made for the dioxygenation of these substrates by 2NTDO. Evaluation of reaction kinetics, isotope effects, and commitment-to-catalysis based on experiment and theory showed that rates of dioxygenation are determined by the enzymatic O2 activation and aromatic C oxygenation. The contribution of enzymatic O2 activation to the reaction rate varies for different nitroaromatic substrates of NBDO and 2NTDO. Because aromatic dioxygenation by nonheme iron dioxygenases is frequently the initial step of biodegradation, O2 activation kinetics may also have been responsible for the minor isotope fractionation reported for the oxygenation of other aromatic contaminants.


Assuntos
Dioxigenases/metabolismo , Isótopos de Nitrogênio , Biodegradação Ambiental , Isótopos de Carbono , Cinética , Especificidade por Substrato
17.
Environ Sci Technol ; 50(6): 2908-20, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26864277

RESUMO

The main removal process for polar organic micropollutants during activated sludge treatment is biotransformation, which often leads to the formation of stable transformation products (TPs). Because the analysis of TPs is challenging, the use of pathway prediction systems can help by generating a list of suspected TPs. To complete and refine pathway prediction, comprehensive biotransformation studies for compounds exhibiting pertinent functional groups under environmentally relevant conditions are needed. Because many polar organic micropollutants present in wastewater contain one or several amine functional groups, we systematically explored amine biotransformation by conducting experiments with 19 compounds that contained 25 structurally diverse primary, secondary, and tertiary amine moieties. The identification of 144 TP candidates and the structure elucidation of 101 of these resulted in a comprehensive view on initial amine biotransformation reactions. The reactions with the highest relevance were N-oxidation, N-dealkylation, N-acetylation, and N-succinylation. Whereas many of the observed reactions were similar to those known for the mammalian metabolism of amine-containing xenobiotics, some N-acylation reactions were not previously described. In general, different reactions at the amine functional group occurred in parallel. Finally, recommendations on how these findings can be implemented to improve microbial pathway prediction of amine-containing micropollutants are given.


Assuntos
Aminas/química , Biodegradação Ambiental , Esgotos/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
18.
Biodegradation ; 27(2-3): 179-93, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27142265

RESUMO

Hexachlorocyclohexane (HCH) contaminated soils were treated for a period of up to 64 days in situ (HCH dumpsite, Lucknow) and ex situ (University of Delhi) in line with three bioremediation approaches. The first approach, biostimulation, involved addition of ammonium phosphate and molasses, while the second approach, bioaugmentation, involved addition of a microbial consortium consisting of a group of HCH-degrading sphingomonads that were isolated from HCH contaminated sites. The third approach involved a combination of biostimulation and bioaugmentation. The efficiency of the consortium was investigated in laboratory scale experiments, in a pot scale study, and in a full-scale field trial. It turned out that the approach of combining biostimulation and bioaugmentation was most effective in achieving reduction in the levels of α- and ß-HCH and that the application of a bacterial consortium as compared to the action of a single HCH-degrading bacterial strain was more successful. Although further degradation of ß- and δ-tetrachlorocyclohexane-1,4-diol, the terminal metabolites of ß- and δ-HCH, respectively, did not occur by the strains comprising the consortium, these metabolites turned out to be less toxic than the parental HCH isomers.


Assuntos
Bactérias/metabolismo , Hexaclorocicloexano/metabolismo , Poluentes do Solo/metabolismo , Biodegradação Ambiental , Consórcios Microbianos
19.
Appl Environ Microbiol ; 81(2): 666-75, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25398862

RESUMO

Biodiversities can differ substantially among different wastewater treatment plant (WWTP) communities. Whether differences in biodiversity translate into differences in the provision of particular ecosystem services, however, is under active debate. Theoretical considerations predict that WWTP communities with more biodiversity are more likely to contain strains that have positive effects on the rates of particular ecosystem functions, thus resulting in positive associations between those two variables. However, if WWTP communities were sufficiently biodiverse to nearly saturate the set of possible positive effects, then positive associations would not occur between biodiversity and the rates of particular ecosystem functions. To test these expectations, we measured the taxonomic biodiversity, functional biodiversity, and rates of 10 different micropollutant biotransformations for 10 full-scale WWTP communities. We have demonstrated that biodiversity is positively associated with the rates of specific, but not all, micropollutant biotransformations. Thus, one cannot assume whether or how biodiversity will associate with the rate of any particular micropollutant biotransformation. We have further demonstrated that the strongest positive association is between biodiversity and the collective rate of multiple micropollutant biotransformations. Thus, more biodiversity is likely required to maximize the collective rates of multiple micropollutant biotransformations than is required to maximize the rate of any individual micropollutant biotransformation. We finally provide evidence that the positive associations are stronger for rare micropollutant biotransformations than for common micropollutant biotransformations. Together, our results are consistent with the hypothesis that differences in biodiversity can indeed translate into differences in the provision of particular ecosystem services by full-scale WWTP communities.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Biodiversidade , Águas Residuárias/microbiologia , Poluentes da Água/metabolismo , Bactérias/genética , Biotransformação , DNA Bacteriano/química , DNA Bacteriano/genética , Dados de Sequência Molecular , Análise de Sequência de DNA , Purificação da Água
20.
Appl Environ Microbiol ; 80(4): 1306-13, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317077

RESUMO

The fundamentals of growth-linked biodegradation occurring at low substrate concentrations are poorly understood. Substrate utilization kinetics and microbial growth yields are two critically important process parameters that can be influenced by low substrate concentrations. Standard biodegradation tests aimed at measuring these parameters generally ignore the ubiquitous occurrence of assimilable organic carbon (AOC) in experimental systems which can be present at concentrations exceeding the concentration of the target substrate. The occurrence of AOC effectively makes biodegradation assays conducted at low substrate concentrations mixed-substrate assays, which can have profound effects on observed substrate utilization kinetics and microbial growth yields. In this work, we introduce a novel methodology for investigating biodegradation at low concentrations by restricting AOC in our experiments. We modified an existing method designed to measure trace concentrations of AOC in water samples and applied it to systems in which pure bacterial strains were growing on pesticide substrates between 0.01 and 50 mg liter(-1). We simultaneously measured substrate concentrations by means of high-performance liquid chromatography with UV detection (HPLC-UV) or mass spectrometry (MS) and cell densities by means of flow cytometry. Our data demonstrate that substrate utilization kinetic parameters estimated from high-concentration experiments can be used to predict substrate utilization at low concentrations under AOC-restricted conditions. Further, restricting AOC in our experiments enabled accurate and direct measurement of microbial growth yields at environmentally relevant concentrations for the first time. These are critical measurements for evaluating the degradation potential of natural or engineered remediation systems. Our work provides novel insights into the kinetics of biodegradation processes and growth yields at low substrate concentrations.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carbono/metabolismo , Compostos Orgânicos/metabolismo , Praguicidas/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão , Citometria de Fluxo , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA