Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ultrastruct Pathol ; 46(5): 462-475, 2022 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-35946926

RESUMO

Huntington´s disease (HD) is a progressive neurodegenerative disease with onset in adulthood that leads to a complete disability and death in approximately 20 years after onset of symptoms. HD is caused by an expansion of a CAG triplet in the gene for huntingtin. Although the disease causes most damage to striatal neurons, other parts of the nervous system and many peripheral tissues are also markedly affected. Besides huntingtin malfunction, mitochondrial impairment has been previously described as an important player in HD. This study focuses on mitochondrial structure and function in cultivated skin fibroblasts from 10 HD patients to demonstrate mitochondrial impairment in extra-neuronal tissue. Mitochondrial structure, mitochondrial fission, and cristae organization were significantly disrupted and signs of elevated apoptosis were found. In accordance with structural changes, we also found indicators of functional alteration of mitochondria. Mitochondrial disturbances presented in fibroblasts from HD patients confirm that the energy metabolism damage in HD is not localized only to the central nervous system, but also may play role in the pathogenesis of HD in peripheral tissues. Skin fibroblasts can thus serve as a suitable cellular model to make insight into HD pathobiochemical processes and for the identification of possible targets for new therapies.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Adulto , Fibroblastos/metabolismo , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Mitocôndrias/patologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/patologia
2.
Crit Care Med ; 47(6): e461-e469, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30908312

RESUMO

OBJECTIVES: To investigate the potential benefits of vagus nerve stimulation in a clinically-relevant large animal model of progressive sepsis. DESIGN: Prospective, controlled, randomized trial. SETTING: University animal research laboratory. SUBJECTS: Twenty-five domestic pigs were divided into three groups: 1) sepsis group (eight pigs), 2) sepsis + vagus nerve stimulation group (nine pigs), and 3) control sham group (eight pigs). INTERVENTIONS: Sepsis was induced by cultivated autologous feces inoculation in anesthetized, mechanically ventilated, and surgically instrumented pigs and followed for 24 hours. Electrical stimulation of the cervical vagus nerve was initiated 6 hours after the induction of peritonitis and maintained throughout the experiment. MEASUREMENTS AND MAIN RESULTS: Measurements of hemodynamics, electrocardiography, biochemistry, blood gases, cytokines, and blood cells were collected at baseline (just before peritonitis induction) and at the end of the in vivo experiment (24 hr after peritonitis induction). Subsequent in vitro analyses addressed cardiac contractility and calcium handling in isolated tissues and myocytes and analyzed mitochondrial function by ultrasensitive oxygraphy. Vagus nerve stimulation partially or completely prevented the development of hyperlactatemia, hyperdynamic circulation, cellular myocardial depression, shift in sympathovagal balance toward sympathetic dominance, and cardiac mitochondrial dysfunction, and reduced the number of activated monocytes. Sequential Organ Failure Assessment scores and vasopressor requirements significantly decreased after vagus nerve stimulation. CONCLUSIONS: In a clinically-relevant large animal model of progressive sepsis, vagus nerve stimulation was associated with a number of beneficial effects that resulted in significantly attenuated multiple organ dysfunction and reduced vasopressor and fluid resuscitation requirements. This suggests that vagus nerve stimulation might provide a significant therapeutic potential that warrants further thorough investigation.


Assuntos
Monócitos , Insuficiência de Múltiplos Órgãos/fisiopatologia , Insuficiência de Múltiplos Órgãos/terapia , Sepse/fisiopatologia , Sepse/terapia , Nervo Vago , Animais , Modelos Animais de Doenças , Progressão da Doença , Terapia por Estimulação Elétrica , Feminino , Coração/fisiopatologia , Hemodinâmica , Hiperlactatemia/sangue , Hiperlactatemia/prevenção & controle , Contagem de Leucócitos , Masculino , Mitocôndrias Cardíacas/fisiologia , Miocárdio/patologia , Escores de Disfunção Orgânica , Estudos Prospectivos , Distribuição Aleatória , Suínos , Vasoconstritores/uso terapêutico
3.
Adv Exp Med Biol ; 1139: 127-151, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31134499

RESUMO

Urothelial carcinoma is a tumor type featuring pronounced intertumoral heterogeneity and a high mutational and epigenetic load. The two major histopathological urothelial carcinoma types - the non-muscle-invasive and muscle-invasive urothelial carcinoma - markedly differ in terms of their respective typical mutational profiles and also by their probable cells of origin, that is, a urothelial basal cell for muscle-invasive carcinomas and a urothelial intermediate cell for at least a large part of non-muscle-invasive carcinomas. Both non-muscle-invasive and muscle-invasive urothelial carcinomas can be further classified into discrete intrinsic subtypes based on their typical transcriptomic profiles. Urothelial carcinogenesis shows a number of parallels to a urothelial regenerative response. Both of these processes seem to be dominated by specific stem cell populations. In the last years, the nature and location of urothelial stem cell(s) have been subject to many controversies, which now seem to be settled down, favoring the existence of a largely single urothelial stem cell type located among basal cells. Basal cell markers have also been amply used to identify urothelial carcinoma stem cells, especially in muscle-invasive disease, but they proved useful even in some non-muscle-invasive tumors. Analyses on molecular nature of urothelial carcinoma stem cells performed till now point to their great heterogeneity, both during the tumor development and upon intertumoral comparison, sexual dimorphism providing a special example of the latter. Moreover, urothelial cancer stem cells are endowed with intrinsic plasticity, whereby they can modulate their stemness in relation to other tumor-related traits, especially motility and invasiveness. Such transitional modulations suggest underlying epigenetic mechanisms and, even within this context, inter- and intratumoral heterogeneity becomes apparent. Multiple molecular aspects of urothelial cancer stem cell biology markedly influence therapeutic response, implying their knowledge as a prerequisite to improved therapies of this disease. At the same time, the notion of urothelial cancer stem cell heterogeneity implies that this therapeutic benefit would be most probably and most efficiently achieved within the context of individualized antitumor therapy.


Assuntos
Células-Tronco Neoplásicas/citologia , Neoplasias da Bexiga Urinária/patologia , Humanos , Urotélio/patologia
4.
Biomolecules ; 11(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34439734

RESUMO

The contribution of environmental pollutants to the obesity pandemic is still not yet fully recognized. Elucidating possible cellular and molecular mechanisms of their effects is of high importance. Our study aimed to evaluate the effect of chronic, 21-day-long, 2,2-bis (4-chlorophenyl)-1,1-dichlorethylenedichlorodiphenyldichloroethylene (p,p'-DDE) exposure of human adipose-derived mesenchymal stem cells committed to adipogenesis on mitochondrial oxygen consumption on days 4, 10, and 21. In addition, the mitochondrial membrane potential (MMP), the quality of the mitochondrial network, and lipid accumulation in maturing cells were evaluated. Compared to control differentiating adipocytes, exposure to p,p'-DDE at 1 µM concentration significantly increased basal (routine) mitochondrial respiration, ATP-linked oxygen consumption and MMP of intact cells on day 21 of adipogenesis. In contrast, higher pollutant concentration seemed to slow down the gradual increase in ATP-linked oxygen consumption typical for normal adipogenesis. Organochlorine p,p'-DDE did not alter citrate synthase activity. In conclusion, in vitro 1 µM p,p'-DDE corresponding to human exposure is able to increase the mitochondrial respiration per individual mitochondrion at the end of adipocyte maturation. Our data reveal that long-lasting exposure to p,p'-DDE could interfere with the metabolic programming of mature adipocytes.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Diclorodifenil Dicloroetileno/toxicidade , Poluentes Ambientais/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Adipócitos/citologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Potencial da Membrana Mitocondrial , Células-Tronco Mesenquimais/citologia , Obesidade/metabolismo
5.
J Clin Med ; 10(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070472

RESUMO

Sarcomas are a heterogeneous group of mesenchymal tumours, with a great variability in their clinical behaviour. While our knowledge of sarcoma initiation has advanced rapidly in recent years, relatively little is known about mechanisms of sarcoma progression. JUN-murine fibrosarcoma progression series consists of four sarcoma cell lines, JUN-1, JUN-2, JUN-2fos-3, and JUN-3. JUN-1 and -2 were established from a single tumour initiated in a H2K/v-jun transgenic mouse, JUN-3 originates from a different tumour in the same animal, and JUN-2fos-3 results from a targeted in vitro transformation of the JUN-2 cell line. The JUN-1, -2, and -3 cell lines represent a linear progression from the least transformed JUN-2 to the most transformed JUN-3, with regard to all the transformation characteristics studied, while the JUN-2fos-3 cell line exhibits a unique transformation mode, with little deregulation of cell growth and proliferation, but pronounced motility and invasiveness. The invasive sarcoma sublines JUN-2fos-3 and JUN-3 show complex metabolic profiles, with activation of both mitochondrial oxidative phosphorylation and glycolysis and a significant increase in spared respiratory capacity. The specific transcriptomic profile of invasive sublines features very complex biological relationships across the identified genes and proteins, with accentuated autocrine control of motility and angiogenesis. Pharmacologic inhibition of one of the autocrine motility factors identified, Ccl8, significantly diminished both motility and invasiveness of the highly transformed fibrosarcoma cell. This progression series could be greatly valuable for deciphering crucial aspects of sarcoma progression and defining new prognostic markers and potential therapeutic targets.

6.
Front Immunol ; 11: 126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117276

RESUMO

Background: Treatment with mesenchymal stem cells (MSCs) has elicited considerable interest as an adjunctive therapy in sepsis. However, the encouraging effects of experiments with MSC in rodents have not been adequately studied in large-animal models with better relevance to human sepsis. Objectives: Here, we aimed to assess safety and efficacy of bone marrow-derived MSCs in a clinically relevant porcine model of progressive peritonitis-induced sepsis. Methods: Thirty-two anesthetized, mechanically ventilated, and instrumented pigs were randomly assigned into four groups (n = 8 per group): (1) sham-operated group (CONTROL); (2) sham-operated group treated with MSCs (MSC-CONTROL); (3) sepsis group with standard supportive care (SEPSIS); and (4) sepsis group treated with MSCs (MSC-SEPSIS). Peritoneal sepsis was induced by inoculating cultivated autologous feces. MSCs (1 × 106/kg) were administered intravenously at 6 h after sepsis induction. Results: Before, 12, 18, and 24 h after the induction of peritonitis, we measured systemic, regional, and microvascular hemodynamics, multiple-organ functions, mitochondrial energy metabolism, systemic immune-inflammatory response, and oxidative stress. Administration of MSCs in the MSC-CONTROL group did not elicit any measurable acute effects. Treatment of septic animals with MSCs failed to mitigate sepsis-induced hemodynamic alterations or the gradual rise in Sepsis-related organ failure assessment scores. MSCs did not confer any protection against sepsis-mediated cellular myocardial depression and mitochondrial dysfunction. MSCs also failed to modulate the deregulated immune-inflammatory response. Conclusion: Intravenous administration of bone marrow-derived MSCs to healthy animals was well-tolerated. However, in this large-animal, clinically relevant peritonitis-induced sepsis model, MSCs were not capable of reversing any of the sepsis-induced disturbances in multiple biological, organ, and cellular systems.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Sepse/terapia , Animais , Modelos Animais de Doenças , Distribuição Aleatória , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA