Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Bioelectromagnetics ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778512

RESUMO

Potential differential and non-differential recall error in mobile phone use (MPU) in the multinational MOBI-Kids case-control study were evaluated. We compared self-reported MPU with network operator billing record data up to 3 months, 1 year, and 2 years before the interview date from 702 subjects aged between 10 and 24 years in eight countries. Spearman rank correlations, Kappa coefficients and geometric mean ratios (GMRs) were used. No material differences in MPU recall estimates between cases and controls were observed. The Spearman rank correlation coefficients between self-reported and recorded MPU in the most recent 3 months were 0.57 and 0.59 for call number and for call duration, respectively. The number of calls was on average underestimated by the participants (GMR = 0.69), while the duration of calls was overestimated (GMR = 1.59). Country, years since start of using a mobile phone, age at time of interview, and sex did not appear to influence recall accuracy for either call number or call duration. A trend in recall error was seen with level of self-reported MPU, with underestimation of use at lower levels and overestimation of use at higher levels for both number and duration of calls. Although both systematic and random errors in self-reported MPU among participants were observed, there was no evidence of differential recall error between cases and controls. Nonetheless, these sources of exposure measurement error warrant consideration in interpretation of the MOBI-Kids case-control study results on the association between children's use of mobile phones and potential brain cancer risk.

2.
J Occup Health ; 66(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38258936

RESUMO

Digital health technology has been widely applied to mental health interventions worldwide. Using digital phenotyping to identify an individual's mental health status has become particularly important. However, many technologies other than digital phenotyping are expected to become more prevalent in the future. The systematization of these technologies is necessary to accurately identify trends in mental health interventions. However, no consensus on the technical classification of digital health technologies for mental health interventions has emerged. Thus, we conducted a review of systematic review articles on the application of digital health technologies in mental health while attempting to systematize the technology using the Delphi method. To identify technologies used in digital phenotyping and other digital technologies, we included 4 systematic review articles that met the inclusion criteria, and an additional 8 review articles, using a snowballing approach, were incorporated into the comprehensive review. Based on the review results, experts from various disciplines participated in the Delphi process and agreed on the following 11 technical categories for mental health interventions: heart rate estimation, exercise or physical activity, sleep estimation, contactless heart rate/pulse wave estimation, voice and emotion analysis, self-care/cognitive behavioral therapy/mindfulness, dietary management, psychological safety, communication robots, avatar/metaverse devices, and brain wave devices. The categories we defined intentionally included technologies that are expected to become widely used in the future. Therefore, we believe these 11 categories are socially implementable and useful for mental health interventions.


Assuntos
Saúde Digital , Saúde Mental , Humanos , Revisões Sistemáticas como Assunto , Tecnologia , Avatar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA