Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 159(14)2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37815107

RESUMO

Experimentally, in the presence of the crowding agent polyethylene glycol (PEG), sodium ions compact double-stranded DNA more readily than potassium ions. Here, we have used molecular dynamics simulations and the "ion binding shells model" of DNA condensation to provide an explanation for the observed variations in condensation of short DNA duplexes in solutions containing different monovalent cations and PEG; several predictions are made. According to the model we use, externally bound ions contribute the most to the ion-induced aggregation of DNA duplexes. The simulations reveal that for two adjacent DNA duplexes, the number of externally bound Na+ ions is larger than the number of K+ ions over a wide range of chloride concentrations in the presence of PEG, providing a qualitative explanation for the higher propensity of sodium ions to compact DNA under crowded conditions. The qualitative picture is confirmed by an estimate of the corresponding free energy of DNA aggregation that is at least 0.2kBT per base pair more favorable in solution with NaCl than with KCl at the same ion concentration. The estimated attraction free energy of DNA duplexes in the presence of Na+ depends noticeably on the DNA sequence; we predict that AT-rich DNA duplexes are more readily condensed than GC-rich ones in the presence of Na+. Counter-intuitively, the addition of a small amount of a crowding agent with high affinity for the specific condensing ion may lead to the weakening of the ion-mediated DNA-DNA attraction, shifting the equilibrium away from the DNA condensed phase.


Assuntos
DNA , Sódio , DNA/química , Sódio/química , Potássio/química , Pareamento de Bases , Polietilenoglicóis , Íons
2.
J Chem Theory Comput ; 17(11): 7246-7259, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34633813

RESUMO

We have compared distributions of sodium and potassium ions around double-stranded DNA, simulated using fixed charge SPC/E, TIP3P, and OPC water models and the Joung/Cheatham (J/C) ion parameter set, as well as the Li/Merz HFE 6-12 (L/M HFE) ion parameters for OPC water. In all the simulations, the ion distributions are in qualitative agreement with Manning's condensation theory and the Debye-Hückel theory, where expected. In agreement with experiment, binding affinity of monovalent ions to DNA does not depend on ion type in every solvent model. However, behavior of deeply bound ions, including ions bound to specific sites, depends strongly on the solvent model. In particular, the number of potassium ions in the minor groove of AT-tracts differs at least 3-fold between the solvent models tested. The number of sodium ions associated with the DNA agrees quantitatively with the experiment for the OPC water model, followed closely by TIP3P+J/C; the largest deviation from the experiment, ∼10%, is seen for SPC/E+J/C. On the other hand, SPC/E+J/C model is most consistent (67%) with the experimental potassium binding sites, followed by OPC+J/C (60%), TIP3P+J/C (53%), and OPC+L/M HFE (27%). The use of NBFIX correction with TIP3P+J/C improves its consistency with the experiment. In summary, the choice of the solvent model matters little for simulating the diffuse atmosphere of sodium and potassium ions around DNA, but ion distributions become increasingly sensitive to the solvent model near the helical axis. We offer an explanation for these trends. There is no single gold standard solvent model, although OPC water with J/C ions or TIP3P with J/C + NBFIX may offer an imperfect compromise for practical simulations of ionic atmospheres around DNA.


Assuntos
Simulação de Dinâmica Molecular , DNA , Íons , Lítio , Potássio , Sódio , Solventes , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA