Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 154(4): 044303, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514119

RESUMO

Germanium vacancy (GeV) centers in diamonds constitute a promising platform for single-photon sources to be used in quantum information technologies. Emission from these color centers can be enhanced by utilizing a cavity that is resonant at the peak emission wavelength. We investigate circular plasmonic Bragg cavities for enhancing the emission from single GeV centers in nanodiamonds (NDs) at the zero phonon line. Following simulations of the enhancement for different configuration parameters, the appropriately designed Bragg cavities together with out-coupling gratings composed of hydrogen silsesquioxane ridges are fabricated around the NDs containing nitrogen vacancy centers deposited on a silica-coated silver surface. We characterize the fabricated configurations and finely tune the cavity parameters to match the GeV emission. Finally, we fabricate the cavity containing a single GeV-ND and compare the total decay-rate before and after cavity fabrication, finding a decay-rate enhancement of ∼5.5 and thereby experimentally confirming the feasibility of emission enhancement with circular plasmonic cavities.

2.
Sci Adv ; 9(32): eadh0725, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37556533

RESUMO

Generation of single photons carrying spin and orbital angular momenta (SAM and OAM) opens enticing perspectives for exploiting multiple degrees of freedom for high-dimensional quantum systems. However, on-chip generation of single photons encoded with single-mode SAM-OAM states has been a major challenge. Here, by using carefully designed anisotropic nanodimers fabricated atop a substrate, supporting surface plasmon polariton (SPP) propagation, and accurately positioned around a quantum emitter (QE), we enable nonradiative QE-SPP coupling and the SPP outcoupling into free-space propagating radiation featuring the designed SAM and OAM. We demonstrate on-chip room-temperature generation of well-collimated (divergence < 7.5°) circularly polarized (chirality > 0.97) single-mode vortex beams with different topological charges (𝓁 = 0, 1, and 2) and high single-photon purity, g(2)(0) < 0.15. The developed approach can straightforwardly be extended to produce multiple, differently polarized, single-mode single-photon radiation channels and enable thereby realization of high-dimensional quantum sources for advanced quantum photonic technologies.

3.
Nat Commun ; 14(1): 6253, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803006

RESUMO

Channelling single-photon emission in multiple well-defined directions and simultaneously controlling its polarization characteristics is highly desirable for numerous quantum technology applications. We show that this can be achieved by using quantum emitters (QEs) nonradiatively coupled to surface plasmon polaritons (SPPs), which are scattered into outgoing free-propagating waves by appropriately designed metasurfaces. The QE-coupled metasurface design is based on the scattering holography approach with radially diverging SPPs as reference waves. Using holographic metasurfaces fabricated around nanodiamonds with single Ge vacancy centres, we experimentally demonstrate on-chip integrated efficient generation of two well-collimated single-photon beams propagating along different 15° off-normal directions with orthogonal linear polarizations.

4.
Sci Adv ; 8(2): eabk3075, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020431

RESUMO

On-chip photon sources carrying orbital angular momentum (OAM) are in demand for high-capacity optical information processing in both classical and quantum regimes. However, currently exploited integrated OAM sources have been primarily limited to the classical regime. Here, we demonstrate a room-temperature on-chip integrated OAM source that emits well-collimated single photons, with a single-photon purity of g(2)(0) ≈ 0.22, carrying entangled spin and OAM states and forming two spatially separated entangled radiation channels with different polarization properties. The OAM-encoded single photons are generated by efficiently outcoupling diverging surface plasmon polaritons excited with a deterministically positioned quantum emitter via Archimedean spiral gratings. Our OAM single-photon source platform bridges the gap between conventional OAM manipulation and nonclassical light sources, enabling high-dimensional and large-scale photonic quantum systems for quantum information processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA