Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Chromosoma ; 127(1): 73-83, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28951974

RESUMO

The content of repetitive DNA in avian genomes is considerably less than in other investigated vertebrates. The first descriptions of tandem repeats were based on the results of routine biochemical and molecular biological experiments. Both satellite DNA and interspersed repetitive elements were annotated using library-based approach and de novo repeat identification in assembled genome. The development of deep-sequencing methods provides datasets of high quality without preassembly allowing one to annotate repetitive elements from unassembled part of genomes. In this work, we search the chicken assembly and annotate high copy number tandem repeats from unassembled short raw reads. Tandem repeat (GGAAA)n has been identified and found to be the second after telomeric repeat (TTAGGG)n most abundant in the chicken genome. Furthermore, (GGAAA)n repeat forms expanded arrays on the both arms of the chicken W chromosome. Our results highlight the complexity of repetitive sequences and update data about organization of sex W chromosome in chicken.


Assuntos
Galinhas/genética , Cromossomos , Dosagem de Genes , Sequências de Repetição em Tandem , Animais , Feminino , Genoma , Genômica/métodos , Hibridização in Situ Fluorescente , Masculino , Fatores Sexuais
2.
Int J Biol Macromol ; 261(Pt 1): 129516, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278393

RESUMO

The lipopolysaccharides of Herbaspirillum lusitanum P6-12T (HlP6-12T) and H. frisingense GSF30T (HfGSF30T) was isolated by phenol-water extraction from bacterial cells and was characterized using chemical analysis and SDS-PAGE. It was shown that these bacteria produce LPSs that differ in their physicochemical properties and macromolecular organization. In this paper, the lipid A structure of the HlP6-12T LPS, was characterized through chemical analyses and matrix-assisted laser desorption ionization (MALDI) mass spectrometry. To prove the effect of the size of micelles on their bioavailability, we examined the activity of both LPSs toward the morphology of wheat seedlings. Analysis of the HlP6-12T and HfGSF30T genomes showed no significant differences between the operons that encode proteins involved in the biosynthesis of the lipids A and core oligosaccharides. The difference may be due to the composition of the O-antigen operon. HfGSF30T has two copies of the rfb operon, with the main one divided into two fragments. In contrast, the HlP6-12T genome contains only a single rfb-containing operon, and the other O-antigen operons are not comparable at all. The integrity of O-antigen-related genes may also affect LPS variability of. Specifically, we have observed a hairpin structure in the middle of the O-antigen glycosyltransferase gene, which led to the division of the gene into two fragments, resulting in incorrect protein synthesis and potential abnormalities in O-antigen production.


Assuntos
Herbaspirillum , Lipopolissacarídeos , Lipopolissacarídeos/química , Antígenos O/metabolismo , Interações entre Hospedeiro e Microrganismos , Herbaspirillum/genética , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
3.
Genes (Basel) ; 14(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36833448

RESUMO

Human herpes virus 6A (HHV-6A) is able to integrate into the telomeric and subtelomeric regions of human chromosomes representing chromosomally integrated HHV-6A (ciHHV-6A). The integration starts from the right direct repeat (DRR) region. It has been shown experimentally that perfect telomeric repeats (pTMR) in the DRR region are required for the integration, while the absence of the imperfect telomeric repeats (impTMR) only slightly reduces the frequency of HHV-6 integration cases. The aim of this study was to determine whether telomeric repeats within DRR may define the chromosome into which the HHV-6A integrates. We analysed 66 HHV-6A genomes obtained from public databases. Insertion and deletion patterns of DRR regions were examined. We also compared TMR within the herpes virus DRR and human chromosome sequences retrieved from the Telomere-to-Telomere consortium. Our results show that telomeric repeats in DRR in circulating and ciHHV-6A have an affinity for all human chromosomes studied and thus do not define a chromosome for integration.


Assuntos
Herpesvirus Humano 6 , Humanos , Herpesvirus Humano 6/genética , Telômero , Cromossomos Humanos , Sequências Repetitivas de Ácido Nucleico
4.
BMC Res Notes ; 15(1): 345, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348468

RESUMO

OBJECTIVES: This study is performed in the frame of a bigger study dedicated to genomics and transcriptomics of parthenogenesis in vertebrates. Among vertebrates, obligate parthenogenesis was first described in the lizards of the genus Darevskia. In this genus, all found parthenogenetic species originated via interspecific hybridization. It remains unknown which genetic or genomic factors play a key role in the generation of parthenogenetic organisms. Comparative genomic and transcriptomic analysis of parthenogens and their parental species may elucidate this problem. Darevskia valentini is a paternal species for four (of seven) parthenogens of this genus, which we promote as a particularly important species for the generation of parthenogenetic forms. DATA DESCRIPTION: Total cellular RNA was isolated from kidney and liver tissues using the standard Trizol Tissue RNA Extraction protocol. Sequencing of transcriptome libraries prepared by random fragmentation of cDNA samples was performed on an Illumina HiSeq2500. Obtained raw sequences contained 117,6 million reads with the GC content of 47%. After preprocessing, raw data was assembled by Trinity and produced 491,482 contigs.


Assuntos
Lagartos , Animais , Lagartos/genética , Transcriptoma , Partenogênese/genética , Rim , Fígado , RNA
5.
BMC Genomics ; 12: 531, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22035034

RESUMO

BACKGROUND: Functional and morphological studies of tandem DNA repeats, that combine high portion of most genomes, are mostly limited due to the incomplete characterization of these genome elements. We report here a genome wide analysis of the large tandem repeats (TR) found in the mouse genome assemblies. RESULTS: Using a bioinformatics approach, we identified large TR with array size more than 3 kb in two mouse whole genome shotgun (WGS) assemblies. Large TR were classified based on sequence similarity, chromosome position, monomer length, array variability, and GC content; we identified four superfamilies, eight families, and 62 subfamilies - including 60 not previously described. 1) The superfamily of centromeric minor satellite is only found in the unassembled part of the reference genome. 2) The pericentromeric major satellite is the most abundant superfamily and reveals high order repeat structure. 3) Transposable elements related superfamily contains two families. 4) The superfamily of heterogeneous tandem repeats includes four families. One family is found only in the WGS, while two families represent tandem repeats with either single or multi locus location. Despite multi locus location, TRPC-21A-MM is placed into a separated family due to its abundance, strictly pericentromeric location, and resemblance to big human satellites. To confirm our data, we next performed in situ hybridization with three repeats from distinct families. TRPC-21A-MM probe hybridized to chromosomes 3 and 17, multi locus TR-22A-MM probe hybridized to ten chromosomes, and single locus TR-54B-MM probe hybridized with the long loops that emerge from chromosome ends. In addition to in silico predicted several extra-chromosomes were positive for TR by in situ analysis, potentially indicating inaccurate genome assembly of the heterochromatic genome regions. CONCLUSIONS: Chromosome-specific TR had been predicted for mouse but no reliable cytogenetic probes were available before. We report new analysis that identified in silico and confirmed in situ 3/17 chromosome-specific probe TRPC-21-MM. Thus, the new classification had proven to be useful tool for continuation of genome study, while annotated TR can be the valuable source of cytogenetic probes for chromosome recognition.


Assuntos
DNA Satélite/genética , DNA Satélite/metabolismo , Genoma , Animais , Biologia Computacional , Sondas de DNA/química , Hibridização in Situ Fluorescente , Cariotipagem , Camundongos
6.
Data Brief ; 39: 107685, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34917712

RESUMO

Darevskia rock lizards include 29 sexual and seven parthenogenetic species of hybrid origin distributed in the Caucasus. All seven parthenogenetic species of the genus Darevskia were formed as a result of interspecific hybridization of only four sexual species. It remains unknown what are the main advantages of interspecific hybridization along with switching on parthenogenetic reproduction in evolution of reptiles. Data on whole transcriptome sequencing of parthenogens and their parental ancestors can provide value impact in solving this problem. Here we have sequenced ovary tissue transcriptomes from unisexual parthenogenetic lizard D. unisexualis and its parental bisexual ancestors to facilitate the subsequent annotation and to obtain the collinear characteristics for comparison with other lizard species. Here we report generated RNAseq data from total mRNA of ovary tissues of D. unisexualis, D. valentini and D. raddei with 58932755, 51634041 and 62788216 reads. Obtained RNA reads were assembled by Trinity assembler and 95141, 62123, 61836 contigs were identified with N50 values of 2409, 2801 and 2827 respectively. For further analysis top Gene Ontology terms were annotated for all species and transcript number was calculated. The raw data were deposited in the NCBI SRA database (BioProject PRJNA773939). The assemblies are available in Mendeley Data and can be accessed via doi:10.17632/rtd8cx7zc3.1.

7.
Int J Biol Macromol ; 161: 891-897, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32553974

RESUMO

The lipopolysaccharide (LPS) of Herbaspirillum frisingense GSF30T (HfGSF30), a non-pathogenic diazotrophic endobiont, was isolated by phenol-water extraction from bacterial cells and was characterized by chemical analyses and SDS PAGE. The O-specific polysaccharide (OPS, O-antigen), obtained by mild acid hydrolysis of the LPS, was examined by sugar and methylation analysis, along with 1H and 13C NMR spectroscopy, including 2D 1H,1H COSY, 1H,1H TOCSY, 1H,1H ROESY, 1H,13C HSQC, and 1H,13C HMBC experiments. The OPS was found to consist of branched tetrasaccharide repeating units of the following structure: [Formula: see text] This structure is unique among the known bacterial polysaccharide structures. Analysis of the HfGSF30 genome showed that it contained a set of sequentially arranged operons (presumably a cluster of genes) associated with the O-antigen. Amino acid sequence analysis using the BLAST program demonstrated the specificity of this putative cluster for Herbaspirillum spp. The genes responsible for the biosynthesis of the OPS of HfGSF30 were dispersed in the genome, constituting small operons. A putative O-antigen gene cluster of HfGSF30 was identified and found to be consistent with the OPS structure.


Assuntos
Desoxiaçúcares/genética , Herbaspirillum/genética , Lipopolissacarídeos/genética , Antígenos O/genética , Polissacarídeos Bacterianos/genética , Configuração de Carboidratos , Hidrólise , Espectroscopia de Ressonância Magnética/métodos , Metilação , Óperon/genética
8.
Sci Rep ; 6: 24501, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27089831

RESUMO

The Asian arowana (Scleropages formosus), one of the world's most expensive cultivated ornamental fishes, is an endangered species. It represents an ancient lineage of teleosts: the Osteoglossomorpha. Here, we provide a high-quality chromosome-level reference genome of a female golden-variety arowana using a combination of deep shotgun sequencing and high-resolution linkage mapping. In addition, we have also generated two draft genome assemblies for the red and green varieties. Phylogenomic analysis supports a sister group relationship between Osteoglossomorpha (bonytongues) and Elopomorpha (eels and relatives), with the two clades together forming a sister group of Clupeocephala which includes all the remaining teleosts. The arowana genome retains the full complement of eight Hox clusters unlike the African butterfly fish (Pantodon buchholzi), another bonytongue fish, which possess only five Hox clusters. Differential gene expression among three varieties provides insights into the genetic basis of colour variation. A potential heterogametic sex chromosome is identified in the female arowana karyotype, suggesting that the sex is determined by a ZW/ZZ sex chromosomal system. The high-quality reference genome of the golden arowana and the draft assemblies of the red and green varieties are valuable resources for understanding the biology, adaptation and behaviour of Asian arowanas.


Assuntos
Evolução Molecular , Peixes/genética , Genoma , Filogenia , Animais , Feminino , Repetições de Microssatélites/genética , Cromossomos Sexuais/genética
9.
Front Genet ; 5: 223, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25120555

RESUMO

As part of our Asian seabass genome project, we are generating an inventory of repeat elements in the genome and transcriptome. The karyotype showed a diploid number of 2n = 24 chromosomes with a variable number of B-chromosomes. The transcriptome and genome of Asian seabass were searched for repetitive elements with experimental and bioinformatics tools. Six different types of repeats constituting 8-14% of the genome were characterized. Repetitive elements were clustered in the pericentromeric heterochromatin of all chromosomes, but some of them were preferentially accumulated in pretelomeric and pericentromeric regions of several chromosomes pairs and have chromosomes specific arrangement. From the dispersed class of fish-specific non-LTR retrotransposon elements Rex1 and MAUI-like repeats were analyzed. They were wide-spread both in the genome and transcriptome, accumulated on the pericentromeric and peritelomeric areas of all chromosomes. Every analyzed repeat was represented in the Asian seabass transcriptome, some showed differential expression between the gonads. The other group of repeats analyzed belongs to the rRNA multigene family. FISH signal for 5S rDNA was located on a single pair of chromosomes, whereas that for 18S rDNA was found on two pairs. A BAC-derived contig containing rDNA was sequenced and assembled into a scaffold containing incomplete fragments of 18S rDNA. Their assembly and chromosomal position revealed that this part of Asian seabass genome is extremely rich in repeats containing evolutionarily conserved and novel sequences. In summary, transcriptome assemblies and cDNA data are suitable for the identification of repetitive DNA from unknown genomes and for comparative investigation of conserved elements between teleosts and other vertebrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA