Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Infect Immun ; 80(12): 4435-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23045477

RESUMO

An understanding of the immunogenetic basis of naturally acquired immunity to Plasmodium falciparum infection would aid in the designing of a rationally based malaria vaccine. Variants within the Fc gamma receptors (FcγRs) mediate immunity through engagement of immunoglobulin G and other immune mediators, such as gamma interferon (IFN-γ), resulting in erythrophagocytosis and production of inflammatory cytokines in severe malarial anemia (SMA). The Toll-like receptors (TLRs) trigger transcription of proinflammatory cytokines and induce adaptive immune responses. Therefore, these receptors may condition malaria disease pathogenesis through alteration in adaptive and innate immune responses. To further delineate the impacts of FcγRIIIA and TLR9 in SMA pathogenesis, the associations between FcγRIIIA -176F/V and TLR9 -1237T/C variants, SMA (hemoglobin [Hb] < 6.0 g/dl), and circulating IFN-γ levels were investigated in children (n = 301) from western Kenya with acute malaria. Multivariate logistic regression analysis (controlling for potential confounders) revealed that children with the FcγRIIIA -176V/TLR9 -1237C (VC) variant combination had 64% reduced odds of developing SMA (odds ratio [OR], 0.36; 95% confidence interval [CI], 0.20 to 0.64; P = 0.001), while carriers of the FcγRIIIA -176V/TLR9 -1237T (VT) variant combination were twice as susceptible to SMA (OR, 2.04; 95% CI, 1.19 to 3.50; P = 0.009). Children with SMA had higher circulating IFN-γ levels than non-SMA children (P = 0.008). Hemoglobin levels were negatively correlated with IFN-γ levels (r = -0.207, P = 0.022). Consistently, the FcγRIIIA -176V/TLR9 -1237T (VT) carriers had higher levels of circulating IFN-γ (P = 0.011) relative to noncarriers, supporting the observation that higher IFN-γ levels are associated with SMA. These results demonstrate that FcγRIIIA-176F/V and TLR9 -1237T/C variants condition susceptibility to SMA and functional changes in circulating IFN-γ levels.


Assuntos
Anemia/prevenção & controle , Predisposição Genética para Doença , Interferon gama/sangue , Malária Falciparum/complicações , Polimorfismo de Nucleotídeo Único/genética , Receptores de IgG/genética , Receptor Toll-Like 9/genética , Anemia/epidemiologia , Anemia/fisiopatologia , Pré-Escolar , Estudos Transversais , Feminino , Genótipo , Humanos , Lactente , Quênia/epidemiologia , Malária Falciparum/epidemiologia , Masculino , Regiões Promotoras Genéticas/genética , Índice de Gravidade de Doença
2.
Hum Genet ; 131(2): 289-99, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21818580

RESUMO

Development of protective immunity against Plasmodium falciparum is partially mediated through binding of malaria-specific IgG to Fc gamma (γ) receptors. Variations in human FcγRIIA-H/R-131 and FcγRIIIB-NA1/NA2 affect differential binding of IgG sub-classes. Since variability in FcγR may play an important role in severe malarial anemia (SMA) pathogenesis by mediating phagocytosis of red blood cells and triggering cytokine production, the relationship between FcγRIIA-H/R131 and FcγRIIIB-NA1/NA2 haplotypes and susceptibility to SMA (Hb < 6.0 g/dL) was investigated in Kenyan children (n = 528) with acute malaria residing in a holoendemic P. falciparum transmission region. In addition, the association between carriage of the haplotypes and repeated episodes of SMA and all-cause mortality were investigated over a 3-year follow-up period. Since variability in FcγR can alter interferon (IFN)-γ production, a mediator of innate and adaptive immune responses, functional associations between the haplotypes and IFN-γ were also explored. During acute malaria, children with SMA had elevated peripheral IFN-γ levels (P = 0.006). Although multivariate logistic regression analyses (controlling for covariates) revealed no associations between the FcγR haplotypes and susceptibility to SMA during acute infection, the FcγRIIA-131H/FcγRIIIB-NA1 haplotype was associated with decreased peripheral IFN-γ (P = 0.046). Longitudinal analyses showed that carriage of the FcγRIIA-131H/FcγRIIIB-NA1 haplotype was associated with reduced risk of SMA (RR 0.65, 95% CI 0.46-0.90; P = 0.012) and all-cause mortality (P = 0.002). In contrast, carriers of the FcγRIIA-131H/FcγRIIIB-NA2 haplotype had increased susceptibility to SMA (RR 1.47, 95% CI 1.06-2.04; P = 0.020). Results here demonstrate that variation in the FcγR gene alters susceptibility to repeated episodes of SMA and mortality, as well as functional changes in IFN-γ production.


Assuntos
Anemia/complicações , Anemia/genética , Interferon gama/metabolismo , Malária/genética , Malária/mortalidade , Receptores de IgG/genética , Receptores de IgG/metabolismo , Pré-Escolar , Proteínas Ligadas por GPI/metabolismo , Predisposição Genética para Doença , Haplótipos , Humanos , Lactente , Recém-Nascido , Quênia/epidemiologia , Estudos Longitudinais , Recidiva
3.
Am J Hematol ; 87(8): 782-9, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22730036

RESUMO

In holoendemic Plasmodium falciparum transmission areas, severe malaria primarily occurs in children aged <48 months and manifests as severe malarial anemia [SMA; hemoglobin (Hb) < 6.0 g/dL]. Induction of high levels of prostaglandin-E(2) (PGE(2)) through inducible cyclooxygenase-2 (COX-2) is an important host-defense mechanism against invading pathogens. We have previously shown that COX-2-derived PGE(2) levels are reduced in children residing in hyperendemic transmission regions with cerebral malaria and in those with mixed sequelae of anemia and hyperparasitemia. Our in vitro studies further demonstrated that reduced PGE(2) was due to downregulation of COX-2 gene products following phagocytosis of malarial pigment (hemozoin, PfHz). However, as COX-2-PGE(2) pathways and the impact of naturally acquired PfHz on erythropoietic responses have not been determined in children with SMA, plasma and urinary bicyclo-PGE(2)/creatinine and leukocytic COX-2 transcripts were determined in parasitized children (<36 months) stratified into SMA (n = 36) and non-SMA (Hb ≥ 6.0 g/dL; n = 38). Children with SMA had significantly reduced plasma (P = 0.001) and urinary (P < 0.001) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.007). There was a significant positive association between Hb and both plasma (r = 0.363, P = 0.002) and urinary (r = 0.500, P = 0.001)] bicyclo-PGE(2)/creatinine. Furthermore, decreased systemic bicyclo-PGE(2)/creatinine was associated with inefficient erythropoiesis (i.e., reticulocyte production index; RPI < 2.0, P = 0.026). Additional analyses demonstrated that plasma (P = 0.031) and urinary (P = 0.070) bicyclo-PGE(2)/creatinine and COX-2 transcripts (P = 0.026) progressively declined with increasing concentrations of naturally acquired PfHz by monocytes. Results presented here support a model in which reduced COX-2-derived PGE(2), driven in part by naturally acquired PfHz by monocytes, promotes decreased erythropoietic responses in children with SMA.


Assuntos
Anemia , Ciclo-Oxigenase 2/biossíntese , Dinoprostona , Eritropoese , Regulação Enzimológica da Expressão Gênica , Hemeproteínas/metabolismo , Malária Falciparum , Anemia/sangue , Anemia/parasitologia , Anemia/urina , Pré-Escolar , Creatinina/sangue , Creatinina/urina , Dinoprostona/sangue , Dinoprostona/urina , Feminino , Humanos , Lactente , Malária Falciparum/sangue , Malária Falciparum/urina , Masculino , Monócitos/metabolismo , Monócitos/parasitologia , Parasitemia , Fagocitose , Índice de Gravidade de Doença
4.
Infect Immun ; 79(12): 4923-32, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21969001

RESUMO

Severe malarial anemia (SMA) is a leading cause of morbidity and mortality in children residing in regions where Plasmodium falciparum transmission is holoendemic. Although largely unexplored in children with SMA, interleukin-18 (IL-18) is important for regulating innate and acquired immunity in inflammatory and infectious diseases. As such, we selected two functional single-nucleotide polymorphisms (SNPs) in the IL-18 promoter (-137G→C [rs187238] and -607C→A [rs1946518]) whose haplotypes encompass significant genetic variation due to the presence of strong linkage disequilibrium among these variants. The relationship between the genotypes/haplotypes, SMA (hemoglobin [Hb], <5.0 g/dl], and longitudinal clinical outcomes were then investigated in Kenyan children (n = 719). Multivariate logistic regression analyses controlling for age, gender, sickle cell trait, glucose-6-phosphate dehydrogenase (G6PD) deficiency, HIV-1, and bacteremia revealed that carriage of the -607AA genotype was associated with protection against SMA (odds ratio [OR] = 0.440 [95% confidence interval {CI} = 0.21 to 0.90], P = 0.031) in children with acute infection. In contrast, carriers of the -137G/-607C (GC) haplotype had increased susceptibility to SMA (OR = 2.050 [95% CI = 1.04 to 4.05], P = 0.039). Measurement of IL-18 gene expression in peripheral blood leukocytes demonstrated that elevated IL-18 transcripts were associated with reduced hemoglobin concentrations (ρ = -0.293, P = 0.010) and that carriers of the "susceptible" GC haplotype had elevated IL-18 transcripts (P = 0.026). Longitudinal investigation of clinical outcomes over a 3-year follow-up period revealed that carriers of the rare CC haplotype (∼1% frequency) had 5.76 times higher mortality than noncarriers (P = 0.001). Results presented here demonstrate that IL-18 promoter haplotypes that condition elevated IL-18 gene products during acute infection are associated with increased risk of SMA. Furthermore, carriage of the rare CC haplotype significantly increases the risk of childhood mortality.


Assuntos
Anemia/etiologia , Haplótipos/genética , Mortalidade Infantil , Interleucina-18/genética , Malária Falciparum/complicações , Regiões Promotoras Genéticas/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Testes Genéticos , Variação Genética , Humanos , Lactente , Quênia/epidemiologia , Desequilíbrio de Ligação , Malária Falciparum/epidemiologia , Malária Falciparum/mortalidade , Masculino , Razão de Chances , Fatores de Risco
5.
BMC Genet ; 12: 69, 2011 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-21819616

RESUMO

BACKGROUND: Plasmodium falciparum malaria remains a leading cause of morbidity and mortality among African children. Innate immunity provides the first line of defence against P. falciparum infections, particularly in young children that lack naturally-acquired malarial immunity, such as the population examined here. Consistent with the fact that elevated interleukin (IL)-12 is an important component of the innate immune response that provides protective immunity against malaria, we have previously shown that suppression of IL-12 in African children is associated with the development of severe malarial anaemia (SMA). Since the role of IL12B variants in conditioning susceptibility to SMA remains largely unexplored, the association between a single nucleotide polymorphism (1188A→C, rs3212227), SMA (Hb<6.0 g/dL), circulating IL-12p40/p70 levels, and longitudinal clinical outcomes in Kenyan children (n = 756) residing in a holoendemic falciparum malaria transmission area were investigated. RESULTS: Multivariate logistic regression analysis in children with acute malaria (n = 544) demonstrated that carriers of the C allele had increased susceptibility to SMA (CC: OR, 1.674; 95% CI, 1.006-2.673; P = 0.047, and AC: OR, 1.410; 95% CI, 0.953-2.087; P = 0.086) relative to wild type (AA). Although children with SMA had lower IL-12p40/p70 levels than the non-SMA group (P = 0.037), levels did not differ significantly according to genotype. Longitudinal analyses in the entire cohort (n = 756) failed to show any significant relationships between rs3212227 genotypes and either susceptibility to SMA or all-cause mortality throughout the three year follow-up. CONCLUSION: The rs3212227 is a marker of susceptibility to SMA in children with acute disease, but does not appear to mediate functional changes in IL-12 production or longitudinal outcomes during the acquisition of naturally-acquired malarial immunity.


Assuntos
Anemia/genética , Subunidade p40 da Interleucina-12/genética , Malária Falciparum/complicações , Malária Falciparum/genética , Polimorfismo de Nucleotídeo Único , Regiões 3' não Traduzidas , Anemia/complicações , Anemia/mortalidade , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Quênia , Estudos Longitudinais , Masculino
6.
Infect Immun ; 78(1): 453-60, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19884328

RESUMO

Plasmodium falciparum malaria is a leading global cause of infectious disease burden. In areas in which P. falciparum transmission is holoendemic, such as western Kenya, severe malarial anemia (SMA) results in high rates of pediatric morbidity and mortality. Although the pathophysiological basis of SMA is multifactorial, we recently discovered that suppression of unexplored hematopoietic growth factors that promote erythroid and myeloid colony development, such as stem cell growth factor (SCGF) (C-type lectin domain family member 11A [CLEC11A]), was associated with enhanced development of SMA and reduced erythropoietic responses. To extend these investigations, the relationships between a novel SCGF promoter variant (-539C/T, rs7246355), SMA (hemoglobin [Hb] < 6.0 g/dl), and reduced erythropoietic responses (reticulocyte production index [RPI], <2.0) were investigated with Kenyan children (n = 486) with falciparum malaria from western Kenya. Circulating SCGF was positively correlated with hemoglobin levels (r = 0.251; P = 0.022) and the reticulocyte production index (RPI) (r = 0.268; P = 0.025). Children with SMA also had lower SCGF levels than those in the non-SMA group (P = 0.005). Multivariate logistic regression analyses controlling for covariates demonstrated that individuals with the homologous T allele were protected against SMA (odds ratio, 0.57; 95% confidence interval [95% CI] 0.34 to 0.94; P = 0.027) relative to CC (wild-type) carriers. Carriers of the TT genotype also had higher SCGF levels in circulation (P = 0.018) and in peripheral blood mononuclear cell culture supernatants (P = 0.041), as well as an elevated RPI (P = 0.005) relative to individuals with the CC genotype. The results presented here demonstrate that homozygous T at -539 in the SCGF promoter is associated with elevated SCGF production, enhanced erythropoiesis, and protection against the development of SMA in children with falciparum malaria.


Assuntos
Anemia/etiologia , Anemia/genética , Regulação da Expressão Gênica/fisiologia , Fatores de Crescimento de Células Hematopoéticas/genética , Lectinas Tipo C/genética , Malária Falciparum/complicações , Pré-Escolar , Feminino , Variação Genética , Genótipo , Humanos , Lactente , Masculino , Regiões Promotoras Genéticas
7.
PLoS One ; 8(2): e53984, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23437039

RESUMO

BACKGROUND: Improved characterization of infectious disease dynamics is required. To that end, three-dimensional (3D) data analysis of feedback-like processes may be considered. METHODS: To detect infectious disease data patterns, a systems biology (SB) and evolutionary biology (EB) approach was evaluated, which utilizes leukocyte data structures designed to diminish data variability and enhance discrimination. Using data collected from one avian and two mammalian (human and bovine) species infected with viral, parasite, or bacterial agents (both sensitive and resistant to antimicrobials), four data structures were explored: (i) counts or percentages of a single leukocyte type, such as lymphocytes, neutrophils, or macrophages (the classic approach), and three levels of the SB/EB approach, which assessed (ii) 2D, (iii) 3D, and (iv) multi-dimensional (rotating 3D) host-microbial interactions. RESULTS: In all studies, no classic data structure discriminated disease-positive (D+, or observations in which a microbe was isolated) from disease-negative (D-, or microbial-negative) groups: D+ and D- data distributions overlapped. In contrast, multi-dimensional analysis of indicators designed to possess desirable features, such as a single line of observations, displayed a continuous, circular data structure, whose abrupt inflections facilitated partitioning into subsets statistically significantly different from one another. In all studies, the 3D, SB/EB approach distinguished three (steady, positive, and negative) feedback phases, in which D- data characterized the steady state phase, and D+ data were found in the positive and negative phases. In humans, spatial patterns revealed false-negative observations and three malaria-positive data classes. In both humans and bovines, methicillin-resistant Staphylococcus aureus (MRSA) infections were discriminated from non-MRSA infections. CONCLUSIONS: More information can be extracted, from the same data, provided that data are structured, their 3D relationships are considered, and well-conserved (feedback-like) functions are estimated. Patterns emerging from such structures may distinguish well-conserved from recently developed host-microbial interactions. Applications include diagnosis, error detection, and modeling.


Assuntos
Retroalimentação Fisiológica , Interações Hospedeiro-Patógeno/fisiologia , Biologia de Sistemas , Vertebrados/microbiologia , Vertebrados/virologia , Animais , Aves/virologia , Bovinos , Reações Falso-Negativas , Humanos , Malária/diagnóstico , Malária/parasitologia , Staphylococcus aureus Resistente à Meticilina/fisiologia , Prognóstico , Reprodutibilidade dos Testes , Especificidade da Espécie , Vertebrados/parasitologia , Vírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA