Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Exp Bot ; 73(15): 5089-5110, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-35536688

RESUMO

The Pannonian Plain, as the most productive region of Southeast Europe, has a long tradition of agronomic production as well as agronomic research and plant breeding. Many research institutions from the agri-food sector of this region have a significant impact on agriculture. Their well-developed and fruitful breeding programmes resulted in productive crop varieties highly adapted to the specific regional environmental conditions. Rapid climatic changes that occurred during the last decades led to even more investigations of complex interactions between plants and their environments and the creation of climate-smart and resilient crops. Plant phenotyping is an essential part of botanical, biological, agronomic, physiological, biochemical, genetic, and other omics approaches. Phenotyping tools and applied methods differ among these disciplines, but all of them are used to evaluate and measure complex traits related to growth, yield, quality, and adaptation to different environmental stresses (biotic and abiotic). During almost a century-long period of plant breeding in the Pannonian region, plant phenotyping methods have changed, from simple measurements in the field to modern plant phenotyping and high-throughput non-invasive and digital technologies. In this review, we present a short historical background and the most recent developments in the field of plant phenotyping, as well as the results accomplished so far in Croatia, Hungary, and Serbia. Current status and perspectives for further simultaneous regional development and modernization of plant phenotyping are also discussed.


Assuntos
Produtos Agrícolas , Melhoramento Vegetal , Agricultura/métodos , Clima , Mudança Climática , Produtos Agrícolas/genética , Melhoramento Vegetal/métodos
2.
Theor Appl Genet ; 135(11): 3987-4003, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35678824

RESUMO

Crop wild relatives (CWRs) are recognized as the best potential source of traits for crop improvement. However, successful crop improvement using CWR relies on identifying variation in genes controlling desired traits in plant germplasms and subsequently incorporating them into cultivars. Epigenetic diversity may provide an additional layer of variation within CWR and can contribute novel epialleles for key traits for crop improvement. There is emerging evidence that epigenetic variants of functional and/or agronomic importance exist in CWR gene pools. This provides a rationale for the conservation of epigenotypes of interest, thus contributing to agrobiodiversity preservation through conservation and (epi)genetic monitoring. Concepts and techniques of classical and modern breeding should consider integrating recent progress in epigenetics, initially by identifying their association with phenotypic variations and then by assessing their heritability and stability in subsequent generations. New tools available for epigenomic analysis offer the opportunity to capture epigenetic variation and integrate it into advanced (epi)breeding programmes. Advances in -omics have provided new insights into the sources and inheritance of epigenetic variation and enabled the efficient introduction of epi-traits from CWR into crops using epigenetic molecular markers, such as epiQTLs.


Assuntos
Agricultura , Biodiversidade , Epigenômica
3.
Plant Cell Rep ; 40(6): 935-951, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33475781

RESUMO

KEY MESSAGE: This review illustrates how far we have come since the emergence of GE technologies and how they could be applied to obtain superior and sustainable crop production. The main challenges of today's agriculture are maintaining and raising productivity, reducing its negative impact on the environment, and adapting to climate change. Efficient plant breeding can generate elite varieties that will rapidly replace obsolete ones and address ongoing challenges in an efficient and sustainable manner. Site-specific genome editing in plants is a rapidly evolving field with tangible results. The technology is equipped with a powerful toolbox of molecular scissors to cut DNA at a pre-determined site with different efficiencies for designing an approach that best suits the objectives of each plant breeding strategy. Genome editing (GE) not only revolutionizes plant biology, but provides the means to solve challenges related to plant architecture, food security, nutrient content, adaptation to the environment, resistance to diseases and production of plant-based materials. This review illustrates how far we have come since the emergence of these technologies and how these technologies could be applied to obtain superior, safe and sustainable crop production. Synergies of genome editing with other technological platforms that are gaining significance in plants lead to an exciting new, post-genomic era for plant research and production. In previous months, we have seen what global changes might arise from one new virus, reminding us of what drastic effects such events could have on food production. This demonstrates how important science, technology, and tools are to meet the current time and the future. Plant GE can make a real difference to future sustainable food production to the benefit of both mankind and our environment.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Edição de Genes/métodos , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas/genética , Ração Animal , Sistemas CRISPR-Cas , Produtos Agrícolas/genética , Resistência à Doença , Qualidade dos Alimentos , Laboratórios , Lignina/genética , Doenças das Plantas
5.
Foods ; 10(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450999

RESUMO

The unique rheological properties of bread wheat dough and the breadmaking quality of its flour are the main factors responsible for the global distribution and utilization of wheat. Recently, interest in the production and expansion of spelt wheat has been boosted due to its significance in the production of healthy food, mostly originated from organic production. The aim of this study was to examine and compare quality parameters (gluten content, Zeleny sedimentation volume, farinograph dough properties), protein content and composition (by the Dumas method, Size Exclusion (SE) and Reversed Phase (RP) High Performance Liquid Chromatography (HPLC) analyses) of five bread and five spelt wheat varieties grown under conventional and organic production in Hungary and under conventional production in Serbia. Most of the analyzed traits showed significant differences between varieties, wheat species and growing sites. Total protein content was significantly higher in spelt than in bread wheat and under conventional than under organic production. In comparison to spelt, bread wheat showed better breadmaking quality, characterized by a higher amount of glutenins (in particular high molecular weight glutenin subunits) and unextractable polymeric proteins. The proportion of the gliadins was also found to be different under conventional and organic systems. Spelt Ostro and Oberkulmer-Rotkorn and bread wheat varieties Balkan, Estevan and Pobeda proved suitable for low input and organic systems.

6.
Front Plant Sci ; 10: 501, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114595

RESUMO

In the present study we analyzed the responses of wheat to mild salinity and drought with special emphasis on the so far unclarified interaction of these important stress factors by using high-throughput phenotyping approaches. Measurements were performed on 14 genotypes of different geographic origin (Austria, Azerbaijan, and Serbia). The data obtained by non-invasive digital RGB imaging of leaf/shoot area reflect well the differences in total biomass measured at the end of the cultivation period demonstrating that leaf/shoot imaging can be reliably used to predict biomass differences among different cultivars and stress conditions. On the other hand, the leaf/shoot area has only a limited potential to predict grain yield. Comparison of gas exchange parameters with biomass accumulation showed that suppression of CO2 fixation due to stomatal closure is the principal cause behind decreased biomass accumulation under drought, salt and drought plus salt stresses. Correlation between grain yield and dry biomass is tighter when salt- and drought stress occur simultaneously than in the well-watered control, or in the presence of only salinity or drought, showing that natural variation of biomass partitioning to grains is suppressed by severe stress conditions. Comparison of yield data show that higher biomass and grain yield can be expected under salt (and salt plus drought) stress from those cultivars which have high yield parameters when exposed to drought stress alone. However, relative yield tolerance under drought stress is not a good indicator of yield tolerance under salt (and salt plus drought) drought stress. Harvest index of the studied cultivars ranged between 0.38 and 0.57 under well watered conditions and decreased only to a small extent (0.37-0.55) even when total biomass was decreased by 90% under the combined salt plus drought stress. It is concluded that the co-occurrence of mild salinity and drought can induce large biomass and grain yield losses in wheat due to synergistic interaction of these important stress factors. We could also identify wheat cultivars, which show high yield parameters under the combined effects of salinity and drought demonstrating the potential of complex plant phenotyping in breeding for drought and salinity stress tolerance in crop plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA