Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36573494

RESUMO

Machine learning including modern deep learning models has been extensively used in drug design and screening. However, reliable prediction of molecular properties is still challenging when exploring out-of-domain regimes, even for deep neural networks. Therefore, it is important to understand the uncertainty of model predictions, especially when the predictions are used to guide further experiments. In this study, we explored the utility and effectiveness of evidential uncertainty in compound screening. The evidential Graphormer model was proposed for uncertainty-guided discovery of KDM1A/LSD1 inhibitors. The benchmarking results illustrated that (i) Graphormer exhibited comparative predictive power to state-of-the-art models, and (ii) evidential regression enabled well-ranked uncertainty estimates and calibrated predictions. Subsequently, we leveraged time-splitting on the curated KDM1A/LSD1 dataset to simulate out-of-distribution predictions. The retrospective virtual screening showed that the evidential uncertainties helped reduce false positives among the top-acquired compounds and thus enabled higher experimental validation rates. The trained model was then used to virtually screen an independent in-house compound set. The top 50 compounds ranked by two different ranking strategies were experimentally validated, respectively. In general, our study highlighted the importance to understand the uncertainty in prediction, which can be recognized as an interpretable dimension to model predictions.


Assuntos
Histonas , Lisina , Estudos Retrospectivos , Incerteza , Histona Desmetilases/metabolismo
2.
J Am Chem Soc ; 146(2): 1305-1317, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38169369

RESUMO

Aprotic lithium-oxygen (Li-O2) batteries are considered to be a promising alternative option to lithium-ion batteries for high gravimetric energy storage devices. However, the sluggish electrochemical kinetics, the passivation, and the structural damage to the cathode caused by the solid discharge products have greatly hindered the practical application of Li-O2 batteries. Herein, the nonsolid-state discharge products of the off-stoichiometric Li1-xO2 in the electrolyte solutions are achieved by iridium (Ir) single-atom-based porous organic polymers (termed as Ir/AP-POP) as a homogeneous, soluble electrocatalyst for Li-O2 batteries. In particular, the numerous atomic active sites act as the main nucleation sites of O2-related discharge reactions, which are favorable to interacting with O2-/LiO2 intermediates in the electrolyte solutions, owing to the highly similar lattice-matching effect between the in situ-formed Ir3Li and LiO2, achieving a nonsolid LiO2 as the final discharge product in the electrolyte solutions for Li-O2 batteries. Consequently, the Li-O2 battery with a soluble Ir/AP-POP electrocatalyst exhibits an ultrahigh discharge capacity of 12.8 mAh, an ultralow overpotential of 0.03 V, and a long cyclic life of 700 h with the carbon cloth cathode. The manipulation of nonsolid discharge products in aprotic Li-O2 batteries breaks the traditional growth mode of Li2O2, bringing Li-O2 batteries closer to being a viable technology.

3.
Anal Chem ; 96(6): 2692-2701, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38305871

RESUMO

In recent years, the CRISPR/Cas12a-based sensing strategy has shown significant potential for specific target detection due to its rapid and sensitive characteristics. However, the "always active" biosensors are often insufficient to manipulate nucleic acid sensing with high spatiotemporal control. It remains crucial to develop nucleic acid sensing devices that can be activated at the desired time and space by a remotely applied stimulus. Here, we integrated photoactivation with the CRISPR/Cas12a system for DNA and RNA detection, aiming to provide high spatiotemporal control for nucleic acid sensing. By rationally designing the target recognition sequence, this photoactivation CRISPR/Cas12a system could recognize HPV16 and survivin, respectively. We combined the lateral flow assay strip test with the CRISPR/Cas12a system to realize the visualization of nucleic acid cleavage signals, displaying potential instant test application capabilities. Additionally, we also successfully realized the temporary control of its fluorescent sensing activity for survivin by photoactivation in vivo, allowing rapid detection of target nucleic acids and avoiding the risk of contamination from premature leaks during storage. Our strategy suggests that the CRISPR/Cas12a platform can be triggered by photoactivation to sense various targets, expanding the technical toolbox for precise biological and medical analysis. This study represents a significant advancement in nucleic acid sensing and has potential applications in disease diagnosis and treatment.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Survivina/genética , Biomarcadores , Testes Imediatos
4.
Anal Chem ; 96(18): 6968-6977, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38662948

RESUMO

The assessment of atherosclerosis (AS) progression has emerged as a prominent area of research. Monitoring various pathological features of foam cell (FC) formation is imperative to comprehensively assess AS progression. Herein, a simple benzospiropyran-julolidine-based probe, BSJD, with switchable dual-color imaging ability was developed. This probe can dynamically and reversibly adjust its molecular structure and fluorescent properties in different polar and pH environments. Such a polarity and pH dual-responsive characteristic makes it superior to single-responsive probes in dual-color imaging of lipid droplets (LDs) and lysosomes as well as monitoring their interaction. By simultaneously tracking various pathological features, including LD accumulation and size changes, lysosome dysfunction, and dynamically regulated lipophagy, more comprehensive information can be obtained for multiparameter assessment of FC formation progression. Using BSJD, not only the activation of lipophagy in the early stages and inhibition in the later phases during FC formation are clearly observed but also the important roles of lipophagy in regulating lipid metabolism and alleviating FC formation are demonstrated. Furthermore, BSJD is demonstrated to be capable of rapidly imaging FC plaque sites in AS mice with fast pharmacokinetics. Altogether, BSJD holds great promise as a dual-color organelle-imaging tool for investigating disease-related LD and lysosome changes and their interactions.


Assuntos
Corantes Fluorescentes , Células Espumosas , Gotículas Lipídicas , Corantes Fluorescentes/química , Células Espumosas/metabolismo , Células Espumosas/patologia , Animais , Camundongos , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/química , Lisossomos/metabolismo , Aterosclerose/metabolismo , Aterosclerose/diagnóstico por imagem , Aterosclerose/patologia , Imagem Óptica , Humanos , Células RAW 264.7 , Concentração de Íons de Hidrogênio , Cor
5.
Anal Chem ; 96(25): 10380-10390, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38860916

RESUMO

To reduce the risk of atherosclerotic disease, it is necessary to not only diagnose the presence of atherosclerotic plaques but also assess the vulnerability risk of plaques. Accurate detection of the reactive oxygen species (ROS) level at plaque sites represents a reliable way to assess the plaque vulnerability. Herein, through a simple one-pot reaction, two near-infrared (NIR) fluorescent dyes, one is ROS responsive and the other is inert to ROS, are coassembled in an amphiphilic amino acid-assembled nanoparticle. In the prepared NIR fluorescent amino acid nanoparticle (named FANP), the fluorescent properties and ROS-responsive behaviors of the two fluorescent dyes are well maintained. Surface camouflage through red blood cell membrane (RBCM) encapsulation endows the finally obtained FANP@RBCM nanoprobe with not only further reduced cytotoxicity and improved biocompatibility but also increased immune escape capability, prolonged blood circulation time, and thus enhanced accumulation at atherosclerotic plaque sites. In vitro and in vivo experiments demonstrate that FANP@RBCM not only works well in probing the occurrence of atherosclerotic plaques but also enables plaque vulnerability assessment through the accurate detection of the ROS level at plaque sites in a reliable ratiometric mode, thereby holding great promise as a versatile tool for the diagnosis and risk assessment of atherosclerotic disease.


Assuntos
Aminoácidos , Corantes Fluorescentes , Nanopartículas , Placa Aterosclerótica , Espécies Reativas de Oxigênio , Placa Aterosclerótica/diagnóstico por imagem , Animais , Espécies Reativas de Oxigênio/metabolismo , Corantes Fluorescentes/química , Nanopartículas/química , Camundongos , Aminoácidos/química , Humanos , Medição de Risco , Imagem Óptica , Raios Infravermelhos , Células RAW 264.7
6.
Anal Chem ; 96(16): 6426-6435, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38604773

RESUMO

Sensors designed based on the trans-cleavage activity of CRISPR/Cas12a systems have opened up a new era in the field of biosensing. The current design of CRISPR/Cas12-based sensors in the "on-off-on" mode mainly focuses on programming the activator strand (AS) to indirectly switch the trans-cleavage activity of Cas12a in response to target information. However, this design usually requires the help of additional auxiliary probes to keep the activator strand in an initially "blocked" state. The length design and dosage of the auxiliary probe need to be strictly optimized to ensure the lowest background and the best signal-to-noise ratio. This will inevitably increase the experiment complexity. To solve this problem, we propose using AS after the "RESET" effect to directly regulate the Cas12a enzymatic activity. Initially, the activator strand was rationally designed to be embedded in a hairpin structure to deprive its ability to activate the CRISPR/Cas12a system. When the target is present, target-mediated strand displacement causes the conformation change in the AS, the hairpin structure is opened, and the CRISPR/Cas12a system is reactivated; the switchable structure of AS can be used to regulate the degree of activation of Cas12a according to the target concentration. Due to the advantages of low background and stability, the CRISPR/Cas12a-based strategy can not only image endogenous biomarkers (miR-21) in living cells but also enable long-term and accurate imaging analysis of the process of exogenous virus invasion of cells. Release and replication of virus genome in host cells are indispensable hallmark events of cell infection by virus; sensitive monitoring of them is of great significance to revealing virus infection mechanism and defending against viral diseases.


Assuntos
Técnicas Biossensoriais , Sistemas CRISPR-Cas , MicroRNAs , Sistemas CRISPR-Cas/genética , Técnicas Biossensoriais/métodos , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , Regulação Alostérica , Proteínas Associadas a CRISPR/metabolismo , Endodesoxirribonucleases/metabolismo , Endodesoxirribonucleases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Células HEK293
7.
Chembiochem ; 25(13): e202400229, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38700379

RESUMO

Photodynamic therapy (PDT) is a newly emerged strategy for disease treatment. One challenge of the application of PDT drugs is the side-effect caused by the non-specificity of the photosensitive molecules. Most of the photosensitizers may invade not only the pathogenic cells but also the normal cells. In recent, people tried to use special cargoes to deliver the drugs into target cells. DNA nanoflowers (NFs) are a kind of newly-emerged nanomaterial which constructed through DNA rolling cycle amplification (RCA) reaction. It is reported that the DNA NFs were suitable materials which have been widely applied as nanocargos for drug delivery in cancer chemotherapeutic treatment. In this paper, we have introduced a new multifunctional DNA NF which could be prepared through an one-pot RCA reaction. This proposed DNA NF contained a versatile AS1411 G-quadruplex moiety, which plays key roles not only for specific recognition of cancer cells but also for near-infrared ray based photodynamic therapy when conjugating with a special porphyrin molecule. We demonstrated that the DNA NF showed good selectivity toward cancer cells, leading to highly efficient photo-induced cytotoxicity. Moreover, the in vivo experiment results suggested this DNA NF is a promising nanomaterial for clinical PDT.


Assuntos
DNA , Nanoestruturas , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , DNA/química , Animais , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/síntese química , Nanoestruturas/química , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral
8.
Cytokine ; 179: 156598, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38583255

RESUMO

BACKGROUND: Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS: The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS: Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS: We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.


Assuntos
Aloenxertos , Rejeição de Enxerto , Transplante de Coração , Interleucina-1 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Recombinantes , Animais , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Humanos , Camundongos , Proteínas Recombinantes/farmacologia , Interleucina-1/metabolismo , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Células Th1/imunologia , Células Th1/efeitos dos fármacos , Células Th17/imunologia , Células Th17/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Masculino , Serina-Treonina Quinases TOR/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
9.
Fish Shellfish Immunol ; 144: 109231, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37984613

RESUMO

This study aimed to evaluate the effects of varying zinc (Zn) levels on the growth performance, non-specific immune response, antioxidant capacity, and intestinal microbiota of red claw crayfish (Procambarus clarkii (P. clarkii)). Adopting hydroxy methionine zinc (Zn-MHA) as the Zn source, 180 healthy crayfish with an initial body mass of 6.50 ± 0.05 g were randomly divided into the following five groups: X1 (control group) and groups X2, X3, X4, and X5, which were fed the basal feed supplemented with Zn-MHA with 0, 15, 30, 60, and 90 mg kg-1, respectively. The results indicated that following the addition of various concentrations of Zn-MHA to the diet, the following was observed: Specific growth rate (SGR), weight gain rate (WGR), total protein (TP), total cholesterol (TC), the activities of alkaline phosphatase (AKP), phenoloxidase (PO), total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) and catalase (CAT), the expression of CTL, GPX, and CuZn-SOD genes demonstrated a trend of rising and then declining-with a maximum value in group X4-which was significantly higher than that in group X1 (P < 0.05). Zn deposition in the intestine and hepatopancreas, the activity of GSH-PX, and the expression of GSH-PX were increased, exhibiting the highest value in group X5. The malonaldehyde (MDA) content was significantly reduced, with the lowest value in group X4, and the MDA content of the Zn-MHA addition groups were significantly lower than the control group (P < 0.05). In the analysis of the intestinal microbiota of P. clarkii, the number of operational taxonomic units in group X4 was the highest, and the richness and diversity indexes of groups X3 and X4 were significantly higher than those in group X1 (P < 0.05). Meanwhile, the dietary addition of Zn-MHA decreased and increased the relative abundance of Proteobacteria and Tenericutes, respectively. These findings indicate that supplementation of dietary Zn-MHA at an optimum dose of 60 mg kg-1 may effectively improve growth performance, immune response, antioxidant capacity, and intestinal microbiota richness and species diversity in crayfish.


Assuntos
Antioxidantes , Microbioma Gastrointestinal , Animais , Antioxidantes/metabolismo , Metionina/metabolismo , Astacoidea/metabolismo , Zinco/farmacologia , Suplementos Nutricionais/análise , Dieta/veterinária , Racemetionina/farmacologia , Imunidade Inata , Superóxido Dismutase/farmacologia , Ração Animal/análise
10.
Acta Pharmacol Sin ; 45(3): 480-489, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37993535

RESUMO

Dopaminergic neurons in the substantia nigra (SN) expressing SUR1/Kir6.2 type ATP-sensitive potassium channels (K-ATP) are more vulnerable to rotenone or metabolic stress, which may be an important reason for the selective degeneration of neurons in Parkinson's disease (PD). Baicalein has shown neuroprotective effects in PD animal models. In this study, we investigated the effect of baicalein on K-ATP channels and the underlying mechanisms in rotenone-induced apoptosis of SH-SY5Y cells. K-ATP currents were recorded from SH-SY5Y cells using whole-cell voltage-clamp recording. Drugs dissolved in the external solution at the final concentration were directly pipetted onto the cells. We showed that rotenone and baicalein opened K-ATP channels and increased the current amplitudes with EC50 values of 0.438 µM and 6.159 µM, respectively. K-ATP channel blockers glibenclamide (50 µM) or 5-hydroxydecanoate (5-HD, 250 µM) attenuated the protective effects of baicalein in reducing reactive oxygen species (ROS) content and increasing mitochondrial membrane potential and ATP levels in rotenone-injured SH-SY5Y cells, suggesting that baicalein protected against the apoptosis of SH-SY5Y cells by regulating the effect of rotenone on opening K-ATP channels. Administration of baicalein (150, 300 mg·kg-1·d-1, i.g.) significantly inhibited rotenone-induced overexpression of SUR1 in SN and striatum of rats. We conducted surface plasmon resonance assay and molecular docking, and found that baicalein had a higher affinity with SUR1 protein (KD = 10.39 µM) than glibenclamide (KD = 24.32 µM), thus reducing the sensitivity of K-ATP channels to rotenone. Knockdown of SUR1 subunit reduced rotenone-induced apoptosis and damage of SH-SY5Y cells, confirming that SUR1 was an important target for slowing dopaminergic neuronal degeneration in PD. Taken together, we demonstrate for the first time that baicalein attenuates rotenone-induced SH-SY5Y cell apoptosis through binding to SUR1 and activating K-ATP channels.


Assuntos
Flavanonas , Neuroblastoma , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Ratos , Animais , Canais KATP , Rotenona/farmacologia , Receptores de Sulfonilureias , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Glibureto/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Neurônios Dopaminérgicos/metabolismo , Trifosfato de Adenosina/farmacologia
11.
Arch Toxicol ; 98(5): 1297-1310, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498160

RESUMO

Lung injury has been a serious medical problem that requires new therapeutic approaches and biomarkers. Circular RNAs (circRNAs) are non-coding RNAs (ncRNAs) that exist widely in eukaryotes. CircRNAs are single-stranded RNAs that form covalently closed loops. CircRNAs are significant gene regulators that have a role in the development, progression, and therapy of lung injury by controlling transcription, translating into protein, and sponging microRNAs (miRNAs) and proteins. Although the study of circRNAs in lung injury caused by pulmonary toxicants is just beginning, several studies have revealed their expression patterns. The function that circRNAs perform in relation to pulmonary toxicants (severe acute respiratory distress syndrome coronavirus-2 (SARS-CoV-2), drug abuse, PM2.5, and cigarette smoke) is the main topic of this review. A variety of circRNAs can serve as potential biomarkers of lung injury. In this review, the biogenesis, properties, and biological functions of circRNAs were concluded, and the relationship between circRNAs and pulmonary toxicants was discussed. It is expected that the new ideas and potential treatment targets that circRNAs provide would be beneficial to research into the molecular mechanisms behind lung injury.


Assuntos
Lesão Pulmonar , MicroRNAs , Humanos , RNA Circular/genética , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/genética , Lesão Pulmonar/terapia , Pulmão/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo
12.
Zhonghua Nan Ke Xue ; 30(3): 229-232, 2024 Mar.
Artigo em Zh | MEDLINE | ID: mdl-39177389

RESUMO

OBJECTIVE: To examine the application of a novel pedagogical approach multidimensional supportive psychological intervention (MSPI) in the clinical practice teaching of andrological nursing care. METHODS: Using the Hamilton Depression Scale (HAMD), we assessed the psychology of 100 nursing interns about to enter clinical practice in the Department of Andrology from December 2021 to December 2022. We equally randomized the subjects into an experimental and a control group, the former receiving MSPI and the latter trained on the conventional teaching model without any psychological support intervention. RESULTS: Compared with the baseline, the HAMD scores were significantly decreased in the experimental group after intervention (12.4±2.1 vs 8.9±2.4, P<0.01), but increased in the controls (13.1±1.8 vs 14.7±1.9, P<0.01); the skill scores dramatically increased in the experimental group (82.6±4.7 vs 91.2±2.4, P<0.01), but decreased in the control group after intervention (81.0±3.5 vs 80.4±2.7, P = 0.28). CONCLUSION: MSPI can significantly enhance the learning enthusiasm of nursing students in a short period, reduce their psychological stress and improve teaching outcomes. This approach, combining psychology with teaching, can also strengthen the mental resilience of nursing students and better confront them with future professional challenges.


Assuntos
Estudantes de Enfermagem , Humanos , Estudantes de Enfermagem/psicologia , Ensino , Intervenção Psicossocial/métodos
13.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2654-2665, 2024 May.
Artigo em Zh | MEDLINE | ID: mdl-38812166

RESUMO

This study established an ultrasound-assisted extraction-high performance liquid chromatography method for simulta-neously determinining the content of 11 bioactive compounds including iridoids, phenolic acids, and flavonoids in Lonicera japonica flowers. The flowers at six stages from the rice bud stage(ML) to the golden flower stage(JH) of L. japonica varieties 'Sijuhua' and 'Beihua No.1' in two planting bases in Shandong province were collected. The established method was employed to determine the content of 11 target compounds, on the basis of which the dynamics of active components in L. japonica sampels during different development stages was investigated. The correlation analysis was carried out to reveal the correlations of the content of iridoids, phenolic acids, and flavonoids. Furthermore, the antioxidant activities of samples at different developmental stages were determined, and the relationship between antioxidant activity and chemical components was analyzed by the correlation analysis. The results showed that the total content of the 11 components in 'Sijihua' changed in a "W" pattern from the ML to JH, being the highest at the ML and the second at the slight white stage(EB). The total content of 11 compounds in 'Beihua No.1' was the highest at the ML and decreased gra-dually from the ML to JH. The samples of 'Sijihua' had higher content of iridoids and lower content of phenolic acids than those of 'Beihua No.1'. The content of flavonoids and phenolic acids showed a positive correlation(R~2=0.90, P<0.05) in 'Sijihua' but no obvious correlation in 'Beihua No.1'. The antioxidant activity and phenolic acid content showed positive correlations, with the determination coefficients(R~2) of 0.84(P<0.05) in 'Beihua No.1' and 0.73(P<0.05) in 'Sijihua'. The antioxidant activity of both varieties was the strongest at the ML and the second at the EB. This study revealed that the content dynamics of iridoids, phenolic acids, and flavonoids in 'Sijihua' and 'Beihua No.1' cultivated in Shandong province during different developmental stages. The results indicated that the antioxidant activity of L. japonica flowers was significantly correlated with the content of phenolic acids at different deve-lopmental stages, which provided a basis for determining the optimum harvest time of L. japonica flowers.


Assuntos
Antioxidantes , Flavonoides , Flores , Lonicera , Lonicera/química , Lonicera/crescimento & desenvolvimento , Lonicera/metabolismo , Flores/química , Flores/crescimento & desenvolvimento , Flores/metabolismo , Antioxidantes/metabolismo , Antioxidantes/análise , Antioxidantes/química , China , Flavonoides/análise , Flavonoides/química , Flavonoides/metabolismo , Hidroxibenzoatos/análise , Hidroxibenzoatos/metabolismo , Metabolismo Secundário , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Iridoides/metabolismo , Iridoides/análise , Iridoides/química
14.
J Am Chem Soc ; 145(10): 5718-5729, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36880105

RESUMO

The demand for high-energy sustainable rechargeable batteries has motivated the development of lithium-oxygen (Li-O2) batteries. However, the inherent safety issues of liquid electrolytes and the sluggish reaction kinetics of existing cathodes remain fundamental challenges. Herein, we demonstrate a promising photo-assisted solid-state Li-O2 battery based on metal-organic framework-derived mixed ionic/electronic conductors, which simultaneously serve as the solid-state electrolytes (SSEs) and the cathode. The mixed conductors could effectively harvest ultraviolet-visible light to generate numerous photoelectrons and holes, which is favorable to participate in the electrochemical reaction, contributing to greatly improved reaction kinetics. According to the study on conduction behavior, we discover that the mixed conductors as SSEs possess outstanding Li+ conductivity (1.52 × 10-4 S cm-1 at 25 °C) and superior chemical/electrochemical stability (especially toward H2O, O2-, etc.). Application of mixed ionic electronic conductors in photo-assisted solid-state Li-O2 batteries further reveals that a high energy efficiency (94.2%) and a long life (320 cycles) can be achieved with a simultaneous design of SSEs and cathodes. The achievements present the widespread universality in accelerating the development of safe and high-performance solid-state batteries.

15.
J Am Chem Soc ; 145(39): 21284-21292, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37703101

RESUMO

C-C single bond-linked covalent organic frameworks (CSBL-COFs) are extremely needed because of their excellent stabilities and potential applications in harsh conditions. However, strategies to generate CSBL-COFs are limited to the acetylenic self-homocoupling Glaser-Hay reaction or post-synthetic reduction of vinylene-based COFs. Exploring new strategies to expand the realm of CSBL-COFs is urgently needed but extremely challenging. To address the synthetic challenges, we for the first time developed a general approach via the reaction between aromatic aldehydes and active methyl group-involving monomers with enhanced acidity, which realized the successful construction of a series of CSBL-COFs. As expected, the obtained CSBL-COFs exhibited outstanding chemical stability, which can stabilize in 6 M NaOH, 3 M HCl, boiling water, and 100 mg/mL NaBH4 for at least 3 days. It is important to mention that CSBL-COFs possess a large amount of ionic sites distributed throughout the networks; gentle shaking allowed our COFs to easily self-disperse as nanoparticles and suspend in water for at least 12 h without reprecipitating. As far as we know, such self-dispersed COFs with high water dispersity are rare to date, and few examples are mainly limited to the guanidinium- and pseudorotaxane-based COFs. Our work thus developed a family of self-dispersed COFs for potential applications in different sorts of fields. Our contribution would thus pave a new avenue for constructing a broader class of CSBL-COFs for their wide applications in various fields.

16.
Nat Prod Rep ; 40(9): 1464-1478, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37070562

RESUMO

Covering: up to 202216.19% of reported natural products (NPs) in the Dictionary of Natural Products (DNP) are glycosides. As one of the most important NPs' structural modifications, glycosylation can change the NPs' polarity, making the aglycones more amphipathic. However, until now, little is known about the general distribution profile of the natural glycosides in different biological sources or structural types. The reason, structural or species preferences of the natural glycosylation remain unclear. In this highlight, chemoinformatic methods were employed to analyze the natural glycosides from DNP, the most comprehensively annotated NP database. We found that the glycosylation ratios of NPs from plants, bacteria, animals and fungi decrease successively, which are 24.99%, 20.84%, 8.40% and 4.48%, respectively. Echinoderm-derived NPs (56.11%) are the most frequently glycosylated, while those produced by molluscs (1.55%), vertebrates (2.19%) and Rhodophyta (3.00%) are the opposite. Among the diverse structural types, a large proportion of steroids (45.19%), tannins (44.78%) and flavonoids (39.21%) are glycosides, yet aminoacids and peptides (5.16%), alkaloids (5.66%) are comparatively less glycosylated. Even within the same biological source or structural type, their glycosylation rates fluctuate drastically between sub- or cross-categories. The substitute patterns of flavonoid and terpenoid glycosides and the most frequently glycosylated scaffolds were identified. NPs with different glycosylation levels occupy different chemical spaces of physicochemical property and scaffold. These findings could help us to interpret the preference of NPs' glycosylation and investigate how NP glycosylation could aid NP-based drug discovery.


Assuntos
Produtos Biológicos , Glicosídeos , Animais , Glicosídeos/química , Quimioinformática , Flavonoides/química , Plantas , Extratos Vegetais , Produtos Biológicos/química
17.
Anal Chem ; 95(42): 15725-15735, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37819747

RESUMO

The trans-cleavage activity of CRISPR/Cas12a has been widely used in biosensing. However, many CRISPR/Cas12a-based biosensors, especially those that work in "on-off-on" mode, usually suffer from high background and thus impossible intracellular application. Herein, this problem is efficiently overcome by elaborately designing the activator strand (AS) of CRISPR/Cas12a using the "RESET" effect found by our group. The activation ability of the as-designed AS to CRISPR/Cas12a can be easily inhibited, thus assuring a low background for subsequent biosensing applications, which not only benefits the detection sensitivity improvement of CRISPR/Cas12a-based biosensors but also promotes their applications in live cells as well as makes it possible to design high-performance biosensors with greatly improved flexibility, thus achieving the analysis of a wide range of targets. As examples, by using different strategies such as strand displacement, strand cleavage, and aptamer-substrate interaction to reactivate the inhibited enzyme activity, several CRISPR/Cas12a-based biosensing systems are developed for the sensitive and specific detection of different targets, including nucleic acid (miR-21), biological small molecules (ATP), and enzymes (hOGG1), giving the detection limits of 0.96 pM, 8.6 µM, and 8.3 × 10-5 U/mL, respectively. Thanks to the low background, these biosensors are demonstrated to work well for the accurate imaging analysis of different biomolecules in live cells. Moreover, we also demonstrate that these sensing systems can be easily combined with lateral flow assay (LFA), thus holding great potential in point-of-care testing, especially in poorly equipped or nonlaboratory environments.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Bioensaio , Processamento de Imagem Assistida por Computador , Oligonucleotídeos
18.
Mol Genet Genomics ; 298(2): 495-506, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719481

RESUMO

Congenital cataract (CC) is regarded as the most common hereditary ophthalmic disease in children. Mutations in CC-associated genes play important roles in CC formation, which provides the basis for molecular diagnosis and therapy. Among these CC-associated genes, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (c-MAF) is considered an important transcription factor for eye and lens development. In this study, we recruited a three-generation Chinese Han family with CC. Gene sequencing revealed a novel duplication mutation in c-MAF (NM_005360.5: c.177dup) that caused frameshifting at residue 60 (p. M60fs) of c-MAF. Additionally, in the patient blood samples, the expression levels of related crystallin and noncrystallin genes confirmed that this novel duplication variant impaired the transactivation of c-MAF. Further functional analyses suggested that the c-MAF mutant induces the transcriptional inhibition of CRYAA and CRYGA and subsequently influences ME and G6PD expression levels, ultimately resulting in ROS generation and further leading to cell apoptosis via mitochondria-dependent pathways. In conclusion, we report a novel c-MAF heterozygous mutation that plays a vital role in CC formation in a Chinese family, broadening the genetic spectrum of CC.


Assuntos
Catarata , Cristalinas , Criança , Humanos , Apoptose/genética , Catarata/genética , Catarata/congênito , Catarata/diagnóstico , Cristalinas/genética , Mutação , Linhagem
19.
Artigo em Inglês | MEDLINE | ID: mdl-37728599

RESUMO

Strain KC 927T was isolated during an investigation of the soil bacteria diversity on Jiaozi Mountain, central Yunnan, Southwest China. The strain was Gram-stain-negative, rod-shaped, non-motile, oxidase-negative, catalase-positive and aerobic. Results of 16S rRNA gene alignment and phylogenetic analysis indicated that strain KC 927T was a member of the genus Chryseobacterium and closely related to Chryseobacterium caseinilyticum GCR10T (98.4%), Chryseobacterium piscicola DSM 21068T (98.3 %) and 'Chryseobacterium formosus' CCTCC AB 2015118T (97.9 %). With a genome size of 4 348 708 bp, strain KC 927T had 33.5 mol% DNA G+C content and contained 4012 protein-coding genes and 77 RNA genes. The average nucleotide identity and digital DNA-DNA hybridization values between strain KC 927T and C. caseinilyticum GCR10T, C. piscicola DSM 21068T and 'C. formosus' CCTCC AB 2015118T were 80.1, 79.6 and 90.7 %, and 25.5, 23.6 and 42.0 %, respectively. The main polar lipid of strain KC 927T was phosphatidylethanolamine and the respiratory quinone was MK-6. The major fatty acids (≥10 %) were iso-C15 : 0, iso-C17 : 1 ω9c and iso-C17 : 0 3-OH. Evidence from phenotypic, phylogenetic and chemotaxonomic analyses support that strain KC 927T represents a new species of the genus Chryseobacterium, for which the name Chryseobacterium luquanense sp. nov. is proposed. The type strain is KC 927T (=CGMCC 1.18760T=JCM 35707T).


Assuntos
Caseínas , Chryseobacterium , Composição de Bases , China , Chryseobacterium/genética , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Bactérias
20.
BMC Gastroenterol ; 23(1): 252, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491210

RESUMO

BACKGROUND: Periampullary diverticulum (PAD) may make the performance of endoscopic retrograde cholangiopancreatography (ERCP) in patients with choledocholithiasis more difficult and may increase complication rates. The present study evaluated the effects of PAD on first-time ERCP in patients with choledocholithiasis. METHODS: Outcomes were compared in patients with and without PAD and in those with four types of PAD: papilla located completely inside the diverticulum (type I), papilla located in the inner (type II a) and outer (type II b) margins of the diverticulum; and papilla located outside the diverticulum (type III). Parameters compared included cannulation time and rates of difficult cannulation, post-ERCP pancreatitis (PEP) and perforation. RESULTS: The median cannulation times in patients with types I, II a, II b, III PAD and in those without PAD were 2.0 min, 5.0 min, 0.67 min, 3.5 min, and 3.5 min, respectively, with difficult cannulation rates in these groups of 7.4%, 31.4%, 8.3%, 18.9%, and 23.2%, respectively. The rates of PEP in patients with and without PAD were 5.3% and 5.1%, respectively. Four patients with and one without PAD experienced perforation. CONCLUSIONS: The division of PAD into four types may be more appropriate than the traditional division into three types. Cannulation of type I and II b PAD was easier than cannulation of patients without PAD, whereas cannulation of type II a PAD was more challenging. PAD may not increase the rates of PEP.


Assuntos
Ampola Hepatopancreática , Coledocolitíase , Divertículo , Duodenopatias , Humanos , Coledocolitíase/etiologia , Cateterismo/efeitos adversos , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Duodenopatias/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA