Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38732036

RESUMO

Bivalves hold an important role in marine aquaculture and the identification of growth-related genes in bivalves could contribute to a better understanding of the mechanism governing their growth, which may benefit high-yielding bivalve breeding. Somatostatin receptor (SSTR) is a conserved negative regulator of growth in vertebrates. Although SSTR genes have been identified in invertebrates, their involvement in growth regulation remains unclear. Here, we identified seven SSTRs (PySSTRs) in the Yesso scallop, Patinopecten yessoensis, which is an economically important bivalve cultured in East Asia. Among the three PySSTRs (PySSTR-1, -2, and -3) expressed in adult tissues, PySSTR-1 showed significantly lower expression in fast-growing scallops than in slow-growing scallops. Then, the function of this gene in growth regulation was evaluated in dwarf surf clams (Mulinia lateralis), a potential model bivalve cultured in the lab, via RNA interference (RNAi) through feeding the clams Escherichia coli containing plasmids expressing double-stranded RNAs (dsRNAs) targeting MlSSTR-1. Suppressing the expression of MlSSTR-1, the homolog of PySSTR-1 in M. lateralis, resulted in a significant increase in shell length, shell width, shell height, soft tissue weight, and muscle weight by 20%, 22%, 20%, 79%, and 92%, respectively. A transcriptome analysis indicated that the up-regulated genes after MlSSTR-1 expression inhibition were significantly enriched in the fat digestion and absorption pathway and the insulin pathway. In summary, we systemically identified the SSTR genes in P. yessoensis and revealed the growth-inhibitory role of SSTR-1 in bivalves. This study indicates the conserved function of somatostatin signaling in growth regulation, and ingesting dsRNA-expressing bacteria is a useful way to verify gene function in bivalves. SSTR-1 is a candidate target for gene editing in bivalves to promote growth and could be used in the breeding of fast-growing bivalves.


Assuntos
Bivalves , Pectinidae , Receptores de Somatostatina , Animais , Pectinidae/genética , Pectinidae/crescimento & desenvolvimento , Pectinidae/metabolismo , Bivalves/genética , Bivalves/crescimento & desenvolvimento , Bivalves/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Filogenia , Interferência de RNA , Regulação da Expressão Gênica no Desenvolvimento
2.
Adv Mater ; 36(16): e2312541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38252894

RESUMO

The positive photoconductive (PPC) effect is a well-established primary detection mechanism employed by photodetectors. In contrast, the negative photoconductive (NPC) effect is not extensively investigated thus far, and research on the NPC effect is still in its early stage. Herein, a quaternary van der Waals material, AgBiP2Se6 atomic layers, is discovered to achieve a giant NPC effect. Through experimental observations in a Graphene/AgBiP2Se6/ Graphene-based vertical photodetector, an irreversible conversion is identified from common PPC photoresponse to atypical NPC photoresponse. Notably, this device demonstrates an exceptionally high negative responsivity (R) of 4.9 × 105 A W-1, surpassing the previous records for NPC photodetectors. Additionally, it exhibits remarkable optoelectronic performances, including an external quantum efficiency of 1.3 × 108% and a detectivity (D) of 3.60 × 1012 Jones. The exceptionally high NPC photoresponse observed in this device can be attributed to the swift suppression of photogenerated free carriers at robust recombination centers situated at significant depths, induced by the elevated drain-source voltage bias. The remarkably high NPC photoresponse also positions AgBiP2Se6 as a promising 2D material for multifunctional optoelectronic devices and an excellent platform for systematic exploration of the NPC effect.

3.
Front Psychiatry ; 15: 1323111, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425999

RESUMO

Background: Post-traumatic stress disorder is an important psychological problem affecting the physical mental health of Chinese healthcare workers during the COVID-19 pandemic. Aims: To estimate the prevalence and influencing factors of post-traumatic stress disorder (PTSD) among Chinese healthcare workers during COVID-19. Methods: Search of Chinese and English literature in PubMed, EMbase, Web of Science, Medline, Elsevier, SpringerLink, China Biomedical Literature Database, CNKI, Wan-fang, and CQVIP for the period from December 2019 to August 2023. Stata 14.0 software was used for data analysis. The methodological quality of each study was scored, and data were extracted from the published reports. Pooled prevalence was estimated using the Random-effects model. Publication bias was evaluated using Egger's test and Begg's test. Results: Twenty-one studies included 11841 Chinese healthcare workers in this review. First, the overall prevalence of Post-traumatic stress disorder among Chinese healthcare workers during the COVID-19 epidemic was 29.2% (95% CI: 20.7% to 33.7%). Twelve factors included in the meta-analysis were found to be protective against PTSD among Chinese healthcare workers: female, nurse, married, front-line work, less work experience, family or friend diagnosed with COVID-19, history of chronic disease and fear of COVID-19. Conversely, outside Hubei, higher education, social support and psychological resilience are protective factors. Conclusion: These recent findings increase our understanding of the psychological status of Chinese healthcare workers and encourage that long-term monitoring and long-term interventions should be implemented to improve the mental health of Chinese healthcare workers in the aftermath of the COVID-19.

4.
Brief Funct Genomics ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38860675

RESUMO

In recent years, the application of single-cell transcriptomics and spatial transcriptomics analysis techniques has become increasingly widespread. Whether dealing with single-cell transcriptomic or spatial transcriptomic data, dimensionality reduction and clustering are indispensable. Both single-cell and spatial transcriptomic data are often high-dimensional, making the analysis and visualization of such data challenging. Through dimensionality reduction, it becomes possible to visualize the data in a lower-dimensional space, allowing for the observation of relationships and differences between cell subpopulations. Clustering enables the grouping of similar cells into the same cluster, aiding in the identification of distinct cell subpopulations and revealing cellular diversity, providing guidance for downstream analyses. In this review, we systematically summarized the most widely recognized algorithms employed for the dimensionality reduction and clustering analysis of single-cell transcriptomic and spatial transcriptomic data. This endeavor provides valuable insights and ideas that can contribute to the development of novel tools in this rapidly evolving field.

5.
Heliyon ; 10(4): e25660, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390093

RESUMO

Objective: This study explored the potential association between the Prognostic Nutritional Index (PNI) and the incidence of non-alcoholic fatty liver disease (NAFLD) and advanced liver fibrosis (AF) in the adult population of the United States. Methods: Information on 6409 participants ≥18 years old was downloaded from the U.S. National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020. Multivariate analysis was combined with demographic factors to assess the relationships between PNI, NAFLD, and AF. A restricted cubic spline (RCS) was used to characterise the nonlinear association between the PNI and NAFLD and AF. Results: Patients without NAFLD had substantially lower mean values for parameters such as age, lymphocyte count, neutrophil count, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammatory index (SII), total cholesterol, triglycerides, HbA1c, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) than patients with NAFLD. Interestingly, non-NAFLD patients showed a pronounced increase in serum albumin levels compared to their NAFLD counterparts. In the subset without AF, there were discernibly lower measures of NLR, age, AST, ALT, γ-glutamyl transferase, triglycerides, neutrophil count, and body mass index (BMI) than in patients with AF. It was evident that those without AF had markedly elevated mean albumin and PNI levels in comparison to AF-affected individuals. In the comprehensive multivariable framework, a direct correlation was observed between PNI and NAFLD (adjusted odds ratio[aOR] = 1.07, 95% confidence interval [CI]: 1.05-1.09; p < 0.001), whereas PNI and AF were inversely correlated (aOR = 0.92; 95% CI: 0.88-0.96; p < 0.001). Within the RCS model, a swift ascendancy was noted in the relationship between the PNI and NAFLD, peaking at approximately 52. Conversely, a non-linear inverse association was observed between PNI and AF. Conclusion: Our analytical results indicate that elevated PNI levels are positively associated with an increased risk of NAFLD, but inversely related to the risk of AF. For robust validation of these observations, further research is required.

6.
Mol Ther Methods Clin Dev ; 32(2): 101263, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38827250

RESUMO

Prenatal somatic cell gene therapy (PSCGT) could potentially treat severe, early-onset genetic disorders such as spinal muscular atrophy (SMA) or muscular dystrophy. Given the approval of adeno-associated virus serotype 9 (AAV9) vectors in infants with SMA by the U.S. Food and Drug Administration, we tested the safety and biodistribution of AAV9-GFP (clinical-grade and dose) in fetal lambs to understand safety and efficacy after umbilical vein or intracranial injection on embryonic day 75 (E75) . Umbilical vein injection led to widespread biodistribution of vector genomes in all examined lamb tissues and in maternal uteruses at harvest (E96 or E140; term = E150). There was robust GFP expression in brain, spinal cord, dorsal root ganglia (DRGs), without DRG toxicity and excellent transduction of diaphragm and quadriceps muscles. However, we found evidence of systemic toxicity (fetal growth restriction) and maternal exposure to the viral vector (transient elevation of total bilirubin and a trend toward elevation in anti-AAV9 antibodies). There were no antibodies against GFP in ewes or lambs. Analysis of fetal gonads demonstrated GFP expression in female (but not male) germ cells, with low levels of integration-specific reads, without integration in select proto-oncogenes. These results suggest potential therapeutic benefit of AAV9 PSCGT for neuromuscular disorders, but warrant caution for exposure of female germ cells.

7.
Sci Transl Med ; 16(748): eadk1358, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776392

RESUMO

Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Mutação com Ganho de Função , Neurônios Motores , Canais de Cátion TRPV , Animais , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Neurônios Motores/patologia , Neurônios Motores/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Camundongos , Degeneração Neural/patologia , Degeneração Neural/genética , Fenótipo , Medula Espinal/patologia , Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA