Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Environ Sci Technol ; 57(48): 20043-20052, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37992316

RESUMO

Levoglucosan (LG) is a pyrolysis product of cellulose and hemicellulose at low combustion temperatures. However, LG release cannot be determined only by considering the contents of cellulose and hemicellulose exclusively due to the complexity of combustion processes and the physical-chemical properties of the fuel. This study detected the emission factors (EFs) of LG from 22 different solid fuel samples (including coal and biomass) by considering 18 different fuel properties and five combustion parameters. The average LGEFs during solid fuel burning varied in a range of 0.03-136 mg kg-1, with a magnitude difference of 1-4 orders. While the variations in cellulose (59.5-368 mg g-1) and hemicellulose (73.5-165 mg g-1) contents of fuel samples were only one- to 6-fold. A short combustion duration (<150 min) and a medium combustion temperature (200-400 °C) influenced by volatile and ash contents are crucial for the generation and accumulation of LG. A random forest coupled with the Akaike information criterion stepwise regression model successfully explained 96% of the total LG emission variation using three variables (ash content, cellulose content, and modified combustion efficiency). The ash content promoted coke formation and LG chain cracking by increasing the pyrolysis temperature and is considered the most important factor. The alkali metal in ash can reduce the energy barrier of intramolecular ring contraction reactions and inhibit the dehydration reactions, which led to additional heat being utilized by the competitive pathways of LG formation. This study provided a method to address the parametrization and release mechanisms of combustion source emissions.


Assuntos
Poluentes Atmosféricos , Carvão Mineral , Carvão Mineral/análise , Glucose , Temperatura , Celulose , Poluentes Atmosféricos/análise
2.
Environ Sci Technol ; 56(18): 12873-12885, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36083258

RESUMO

The light-absorbing organic aerosol (OA) constitutes an important fraction of absorbing components, counteracting major cooling effect of aerosols to climate. The mechanisms in linking the complex and changeable chemistry of OA with its absorbing properties remain to be elucidated. Here, by using solvent extraction, ambient OA from an urban environment was fractionated according to polarity, which was further nebulized and online characterized with compositions and absorbing properties. Water extracted high-polar compounds with a significantly higher oxygen to carbon ratio (O/C) than methanol extracts. A transition O/C of about 0.6 was found, below and above which the enhancement and reduction of OA absorptivity were observed with increasing O/C, occurring on the less polar and high polar compounds, respectively. In particular, the co-increase of nitrogen and oxygen elements suggests the important role of nitrogen-containing functional groups in enhancing the absorptivity of the less polar compounds (e.g., forming nitrogen-containing aromatics), while further oxidation (O/C > 0.6) on high-polar compounds likely led to fragmentation and bleaching chromophores. The results here may reconcile the previous observations about darkening or whitening chromophores of brown carbon, and the parametrization of O/C has the potential to link the changing chemistry of OA with its polarity and absorbing properties.


Assuntos
Poluentes Atmosféricos , Metanol , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Nitrogênio , Oxigênio , Material Particulado/análise , Solventes , Água/química
3.
Environ Res ; 210: 112900, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35167853

RESUMO

Vehicle emission is an important contributor to urban air pollution with the increasing number of motor vehicles. Ten typical vehicles were selected in Wuhan to study the emissions of fine particular matters (PM2.5) and associated chemical components by on-road tests through a Portable Emission Monitoring System (PEMS). The emission factors of PM2.5 and the compositions of it from different types of vehicle were obtained. Results showed that the average emission factors of PM2.5 from gasoline and diesel vehicles were 1.266 and 16.589 mg/km. As the emission standard of vehicles increased from China III to China V, PM2.5 emission factor gradually decreased from 17.385 to 1.520 mg/km. Emission rate of PM2.5 was 0.0384 mg/s under low speed, and it increased to 0.0775 and 0.0964 mg/s under the medium and high speeds. The ratio of organic carbon versus elemental carbon (OC/EC) in PM2.5 from gasoline vehicles was 6.89, which was greater than that of diesel vehicles as 3.12. Because gasoline was made of small molecules and the compression ratio of gasoline engine was relatively low, some OC remained in the area where the ignition failed in the cylinder. The top four water-soluble ions with high emission factors were Cl-, SO42-, Ca2+, and Na+, while K, Na, Ca and Mg had a larger emission factors in the 21 tested inorganic elements. These water-soluble ions and inorganic elements mainly came from the oil burning, fuel additives and engines wear. Results of PM2.5 emission characteristics would help to improve the air quality in Wuhan.


Assuntos
Poluentes Atmosféricos , Gasolina , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental , Gasolina/análise , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise , Água
4.
Environ Res ; 213: 113719, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753370

RESUMO

Stringent pollution control measures are generally applied to improve air quality, especially in the Spring Festival in China. Meanwhile, human activities are reduced significantly due to nationwide lockdown measures to curtail the COVID-19 spreading in 2020. Herein, to better understand the influence of control measures and meteorology on air pollution, this study compared the variation of pollution source and their health risk during the 2019 and 2020 Spring Festival in Linfen, China. Results revealed that the average concentration of PM2.5 in 2020 decreased by 39.0% when compared to the 2019 Spring Festival. Organic carbon (OC) and SO42- were the primary contributor to PM2.5 with the value of 19.5% (21.1%) and 23.5% (25.5%) in 2019 (2020) Spring Festival, respectively. Based on the positive matrix factorization (PMF) model, six pollution sources of PM2.5 were indicated. Vehicle emissions (VE) had the maximum reduction in pollution source concentration (28.39 µg· m-3), followed by dust fall (DF) (11.47 µg· m-3), firework burning (FB) (10.39 µg· m-3), coal combustion (CC) (8.54 µg· m-3), and secondary inorganic aerosol (SIA) (3.95 µg· m-3). However, the apportionment concentration of biomass burning (BB) increased by 78.7%, indicating a significant increase in biomass combustion under control measures. PAHs-lifetime lung cancer risk (ILCR) of VE, CC, FB, BB, and DF, decreased by 44.6%, 43.2%, 34.1%, 21.3%, and 2.0%, respectively. Additionally, the average contribution of meteorological conditions on PM2.5 in 2020 increased by 20.21% compared to 2019 Spring Festival, demonstrating that meteorological conditions played a crucial role in located air pollution. This study revealed that the existing control measures in Linfen were efficient to reduce air pollution and health risk, whereas more BB emissions were worthy of further attention. Furthermore, the result was conducive to developing more effective control measures and putting more attention into unfavorable meteorological conditions in Linfen.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , COVID-19/epidemiologia , China/epidemiologia , Carvão Mineral/análise , Controle de Doenças Transmissíveis , Poeira/análise , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , Material Particulado/toxicidade , Aerossóis e Gotículas Respiratórios , Estações do Ano , Emissões de Veículos/análise
5.
Environ Res ; 211: 113107, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35305979

RESUMO

The oxidation of polycyclic aromatic hydrocarbons (PAHs) determines their lifetime, toxicity and consequent environmental and climate impacts. The residential solid fuel burning composes of a substantial fraction of PAH emissions; however, their oxidation rate is yet to be explicitly understood, which is complicated by the contrasting emission factors under different combustion conditions and their subsequent evolution in the atmosphere. Here we used a plume evolution chamber using ambient oxidants to simulate the evolution of residential solid fuel burning emissions under real-world solar radiation, and then to investigate the oxidation process of the emitted PAHs. Contrasting oxidation rate of PAHs was found to be influenced by particles with or without presence of substantial amount of black carbon (BC). In the flaming burning phase, which contained 46% of BC mass fraction and 8% of organic aerosol (OA) internally mixed with BC, the larger PAHs (with 4-7 rings) was rapidly oxidized 12% for every hour of evolution under solar radiation; however, the larger PAHs from smoldering phase tended to maintain unmodified during the evolution, when 95% of OA was externally mixed with only minor fraction of BC (<5%). This may be ascribed to the complex morphology of BC, allowing more exposure for the internally-mixed OA to the oxidants; in contrast with those externally-mixed OA which was prone to be coated by condensed secondary substances. This raises an important consideration about the particle mixing state in influencing the oxidation of PAHs, particularly the coating on PAHs which may extend their lifetime and environmental impacts.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Monitoramento Ambiental , Oxidantes , Hidrocarbonetos Policíclicos Aromáticos/análise , Fuligem
6.
Environ Sci Technol ; 55(3): 1497-1507, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33423493

RESUMO

Levoglucosan (LG) emitted from non-biomass burning (non-BB) sources has given rise to biased or even unreasonable source identification results when adopting LG as a distinct marker of biomass burning (BB). The estimation of LG emission and its spatiotemporal variation for various sources are the keys to reducing uncertainty. This study first developed a LG emission inventory for China from 25 sub-type sources belonging to eight categories, with a 3 km × 3 km spatial resolution and monthly distribution. The total LG emission in 2014 was 145.7 Gg. Domestic BB and open BB contributed 39.2 and 34.3% of the total emission. Non-BB sources, including municipal solid waste burning (9.7%), firework burning (9.6%), meat cooking (5.4%), domestic coal burning (1.5%), ritual item burning (0.2%), and industrial coal burning (0.1%), contributed to 26.5% of the total emission. LG emission varied spatially and temporally. Non-BB sources have a significant spatiotemporal impact on BB source contributions, even in high BB emission regions or in sowing, harvesting, and winter heating seasons. The local BB contributions have been substantially overestimated by 4.28-369% in previous studies, wherein LG was solely referred to as the BB source. By 2018, LG emission from BB might decrease to 63.9% of its total emission. This high-resolution LG emission inventory can be greatly useful for source identification studies in China. It also supports future research on the modeling of smoke aging and pollution control.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , China , Monitoramento Ambiental , Glucose/análogos & derivados , Material Particulado/análise , Estações do Ano
7.
Environ Sci Technol ; 55(9): 5677-5688, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33874721

RESUMO

Emissions of light-absorbing black carbon (BC) and organic aerosol (OA) from biomass burning are presented as complex mixtures, which introduce challenges in modeling their absorbing properties. In this study, we chose typical residential wood burning emission and used a novel designed chamber to investigate the early stage evolution of plumes from different burning phases under real ambient conditions. The detailed mixing state between BC and OA was evaluated, on the basis of which optical modeling was performed to achieve a closure of aerosol-absorbing properties. Intensive secondary OA (SOA) formation was observed under solar radiation. OA from flaming conditions showed a higher absorptivity than from smoldering conditions, as OA is mostly internally and externally mixed with BC, respectively. For flaming (smoldering), the imaginary refractive index of OA (kOA) was initially at 0.03 ± 0.01 (0.001) and 0.15 ± 0.02 (0.05 ± 0.02) at λ = 781 and 405 nm, respectively, with a half-decay time of 2-3 h in light but a <40% decrease under dark within 5 h. The production of less-absorbing SOA in the first 1-2 h and possible subsequent photobleaching of chromophores contributed to the decrease of kOA. The enhanced abundance but decreased absorptivity of coatings on BC resulted in a relatively maintainable absorptivity of BC-containing particles during evolution.


Assuntos
Poluentes Atmosféricos , Madeira , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Biomassa , Carbono , Fumaça , Fuligem/análise , Madeira/química
8.
Ecotoxicol Environ Saf ; 191: 110219, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31972455

RESUMO

Characterization and source identification of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) are conducted in urban Wuhan (WH), suburban Pingdingshan (PDS), and rural Suizhou (SZ) in China during summer harvest. This study analyzes 16 priority PAHs with 38 PM.2.5 samples in June. PAHs had similar physical-chemical properties like polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), which had been listed as Priority Pollutants. The concentration and detection frequency of OCPs and PCBs were considerably lower than those of PAHs in PM2.5. Results indicate that PDS adjoining the highway has the highest PM2.5-bound PAHs. SZ possesses the lowest concentration of PAHs. Principal component analysis and multivariate linear regression model and molecular diagnostic ratio distinguish the sources. Vehicle emissions and coal combustion are extracted in three sites, while the source of PDS also includes gas combustion. SZ was affected by gas combustion and petroleum. The potential source contribution function and the concentration-weighted trajectory track the potential pollution area. The sampling places might be affected by the local sources and short distance transmission cannot be neglected. The incremental lifetime cancer risks (ILCRs) model evaluates the exposure risk of PAHs. According to the ILCR model, WH and PDS are exposed to harmful PAHs. By contrast, SZ is a substantially safe place.


Assuntos
Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Atmosféricos/química , China , Carvão Mineral/análise , Monitoramento Ambiental , Material Particulado/química , Praguicidas/análise , Hidrocarbonetos Policíclicos Aromáticos/química , Estações do Ano , Emissões de Veículos/análise
9.
Environ Sci Technol ; 53(19): 11112-11121, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31423774

RESUMO

The size-resolved properties of atmospheric black carbon (BC) importantly determine its absorption capacity and cloud condensation nuclei (CCN) ability. This study reports comprehensive vertical profiles of BC size-related properties over the Beijing area (BJ) and Continental Europe (CE). BC mass loadings over CE were in the range of clean background over BJ. For both planetary boundary layer (PBL) and lower free troposphere, the BC mass median core diameter over BJ during the cold season was 0.21 ± 0.02 µm, larger than the warm season over BJ and CE (0.18 ± 0.01 µm), which may reflect seasonal differences in emissions. The BC coatings were positively correlated with the pollution level, with background BC having a smaller coated count median diameter (0.19 ± 0.01 µm). The modeled absorption enhancement (Eabs) due to coatings was 1.23 ± 0.14 for the background but in the PBL following a linear expression (Eabs = 0.13 × MassBC,surface + 1.26). The CCN ability of BC was significantly enhanced in the polluted PBL, due to both enlarged size and increased hygroscopicity. In polluted BJ at predicted supersaturations, ∼0.08% half of the BC number could be activated, whereas the cleaner environment needs ∼0.14%. The results here suggest that the highly coated and absorbing BC can be efficiently incorporated into clouds and can exert important indirect radiative impacts over the polluted East Asia region.


Assuntos
Poluentes Atmosféricos , Aerossóis , Atmosfera , Carbono , Monitoramento Ambiental , Europa (Continente) , Ásia Oriental
10.
J Environ Sci (China) ; 55: 339-353, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477830

RESUMO

To compare the inorganic chemical compositions of TSP (total suspended particulate), PM10 (particulate matter with an aerodynamic diameter less than 10µm) and PM2.5 (particulate matter with an aerodynamic diameter less than 2.5µm) in southern and northern cities in China, atmospheric particles were synchronously collected in Dalian (the northern city) and Xiamen (the southern city) in spring and autumn of 2004. The mass concentrations, twenty-three elements and nine soluble ions were assessed. The results show that in Dalian, the mass concentrations of Mg, Al, Ca, Mn and Fe in spring were 4.0-10.1, 2.6-8.0, 4.1-12, 1.2-3.6 and 2.9-7.9 times higher, respectively, than those in Xiamen. The dust storm influence is more obvious in Dalian in spring. However, in Xiamen, heavy metals accounted for 13.9%-17.9% of TSP, while heavy metals contributed to 5.5%-9.3% of TSP in Dalian. These concentrations suggest that heavy metal pollution in Xiamen was more serious. In addition, the concentrations of Na+, Cl-, Ca2+ and Mg2+ were higher in Dalian due to the influence of marine aerosol, construction activities and soil dust. The NO3-/SO42- ratios in Dalian (0.25-0.49) were lower than those in Xiamen (0.51-0.62), indicating that the contributions of vehicle emission to particles in Xiamen were higher. Coefficient of divergence values was higher than 0.40, implying that the inorganic chemical composition profiles for the particles of Dalian and Xiamen were quite different from each other.


Assuntos
Poluentes Atmosféricos/análise , Atmosfera/química , Monitoramento Ambiental , Material Particulado/análise , Poluentes Atmosféricos/química , China , Cidades , Tamanho da Partícula , Emissões de Veículos/análise
11.
Environ Pollut ; : 124397, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906406

RESUMO

Due to a lack of long-term observations in China, reports on historical ozone concentration are severely limited. In this study, by combining observation, reanalysis and model simulation data, XGBoost machine learning algorithm is used to correct the surface ozone concentration from CMIP6 climate model, and the long-term and large-scale surface ozone concentration of China during 1950-2014 is obtained. The long-term evolutions and trends of ozone and meteorological effects on interannual ozone variations are further analyzed. The results reveal that CMIP6 historical simulations have a large underestimation in ozone concentrations and their trends. The XGB-derived ozone are closer to observations, with R2 value of 0.66 and 0.74 for daily and monthly retrievals, respectively. Both the concentrations and exceedances of ozone in most parts of China have shown increasing trends from 1950 to 2014. The daily mean ozone concentration without climate change effects is estimated to be 117 ppb in the year 1950 averaged over China. It indicates that the increase in anthropogenic emissions of China has a significant contribution to ozone enhancement between 1950 and 2014. The higher ozone growth rates of XGB retrievals than those from the model indicate a regional surface ozone penalty due to the warming climate. The relatively significant increment in ozone are estimated in the Central and Western China. Seasonally, the ozone enhancement is largest in spring, indicating a shift in seasonal variation of ozone. Given the uncertainty in simulating historical ozone by climate model, we show that machine learning approaches can provide improved assessment of evolution in surface ozone, along with valuable information to guide future model development and formulate future ozone pollution prevention and control policies.

12.
Environ Int ; 183: 108361, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38091821

RESUMO

Due to the implementation of air pollution control measures in China, air quality has significantly improved, although there are still additional issues to be addressed. This study used the long-term trends of air pollutants to discuss the achievements and challenges in further improving air quality in China. The Kolmogorov-Zurbenko (KZ) filter and multiple-linear regression (MLR) were used to quantify the meteorology-related and emission-related trends of air pollutants from 2014 to 2022 in China. The KZ filter analysis showed that PM2.5 decreased by 7.36 ± 2.92% yr-1, while daily maximum 8-h ozone (MDA8 O3) showed an increasing trend with 3.71 ± 2.89% yr-1 in China. The decrease in PM2.5 and increase in MDA8 O3 were primarily attributed to changes in emission, with the relative contribution of 85.8% and 86.0%, respectively. Meteorology variations, including increased ambient temperature, boundary layer height, and reduced relative humidity, also contributed to the reduction of PM2.5 and the enhancement of MDA8 O3. The emission-related trends of PM2.5 and MDA8 O3 exhibited continuous decrease and increase, respectively, from 2014 to 2022, while the variation rates slowed during 2018-2020 compared to that during 2014-2017, highlighting the challenges in further improving air quality, particularly in simultaneously reducing PM2.5 and O3. This study recommends reducing NH3 emissions from the agriculture sector in rural areas and transport emissions in urban areas to further decrease PM2.5 levels. Addressing O3 pollution requires the reduction of O3 precursor gases based on site-specific atmospheric chemistry considerations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Monitoramento Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Ozônio/análise , China , Material Particulado/análise
13.
Sci Total Environ ; 912: 169466, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38145677

RESUMO

The concentration of particulate matter (PM) has been reduced significantly with the implementation of air pollution control plans in Tianjin. However, as an important component of PM that can lead to global warming and adverse health effects, the influence of pollution control measures (PCM) on black carbon (BC) has been less studied. In this study, ten years of BC concentration satellite-based reanalysis data were collected from MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2), and their reliability was verified using ground-monitored BC data. Using the proposed Kolmogorov-Zurbenko and artificial neural network (KZ-ANN) model, the influences of meteorology and emission measures were separated. The results indicated that the overall meteorological conditions were not conducive to BC diffusion, especially in autumn and winter with low temperature, surface solar radiation, boundary layer height, and high atmospheric pressure, all of which increased the BC concentration. This study also found that although a significant reduction in BC emissions was observed in Tianjin (the total emissions of BC in 2020 dropped by 52 % compared with the level in 2013), the change in emission-influenced BC was relatively low (the concentration of emission-influenced BC in 2022 dropped by only 2.39 % compared to that in 2013). The reduction of emission-influenced BC concentration during the air pollution prevention control and action plan (APPC) was higher than the level during of the three-year action plan for winning the blue sky defense war (abbreviated as the Blue Sky Defense War). In addition, the lockdown measures during the Corona Virus Disease 2019 (COVID-19) did not have beneficial effect on the reduction of emission-influenced BC concentration. This phenomenon can be explained by the long-range transport of BC from surrounding areas, which was also proven by the results of the backward trajectory analysis. Therefore, efforts on emissions reduction in Tianjin were diminished. It is necessary to cooperate with the governments in surrounding areas to implement joint BC control measures, especially in autumn and winter.

14.
Sci Bull (Beijing) ; 69(7): 978-987, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38242834

RESUMO

Aerosol ammonium (NH4+), mainly produced from the reactions of ammonia (NH3) with acids in the atmosphere, has significant impacts on air pollution, radiative forcing, and human health. Understanding the source and formation mechanism of NH4+ can provide scientific insights into air quality improvements. However, the sources of NH3 in urban areas are not well understood, and few studies focus on NH3/NH4+ at different heights within the atmospheric boundary layer, which hinders a comprehensive understanding of aerosol NH4+. In this study, we perform both field observation and modeling studies (the Community Multiscale Air Quality, CMAQ) to investigate regional NH3 emission sources and vertically resolved NH4+ formation mechanisms during the winter in Beijing. Both stable nitrogen isotope analyses and CMAQ model suggest that combustion-related NH3 emissions, including fossil fuel sources, NH3 slip, and biomass burning, are important sources of aerosol NH4+ with more than 60% contribution occurring on heavily polluted days. In contrast, volatilization-related NH3 sources (livestock breeding, N-fertilizer application, and human waste) are dominant on clean days. Combustion-related NH3 is mostly local from Beijing, and biomass burning is likely an important NH3 source (∼15%-20%) that was previously overlooked. More effective control strategies such as the two-product (e.g., reducing both SO2 and NH3) control policy should be considered to improve air quality.

15.
J Environ Sci (China) ; 25(8): 1626-35, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24520701

RESUMO

Concentrations of atmospheric PM10 and chemical components (including twenty-one elements, nine ions, organic carbon (OC) and elemental carbon (EC)) were measured at five sites in a heavily industrial region of Shenzhen, China in 2005. Results showed that PM10 concentrations exhibited the highest values at 264 microg/m3 at the site near a harbor with the influence of harbor activities. Sulfur exhibited the highest concentrations (from 2419 to 3995 ng/m3) of all the studied elements, which may be related to the influence of coal used as fuel in this area for industrial plants. This was verified by the high mass percentages of SO4(2-), which accounted for 34.3%-39.7% of the total ions. NO3-/SO4(2-) ratios varied from 0.64-0.71, which implies coal combustion was predominant compared with vehicle emission. The anion/cation ratios range was close to 0.95, indicating anion deficiency in this region. The harbor site showed the highest OC and EC concentrations, with the influence of emission from vessels. Secondary organic carbon accounted for about 22.6%-38.7% of OC, with the highest percentage occurring at the site adjacent to a coal-fired power plant and wood plant. The mass closure model performed well in this heavily industrial region, with significant correlation obtained between chemically determined and gravimetrically measured PM10 mass. The main constituents of PM10 were found to be organic materials (30.9%-69.5%), followed by secondary inorganic aerosol (7.9%-25.0%), crustal materials (6.7%-13.8%), elemental carbon (3.5%-10.8%), sea salt (2.4%-6.2%) and trace elements (2.0%-4.9%) in this heavily industrialized region. Principal component analysis indicated that the main sources for particulate matter in this industrial region were crustal materials and coal/wood combustion, oil combustion, secondary aerosols, industrial processes and vehicle emission.


Assuntos
Poluentes Atmosféricos/análise , Resíduos Industriais , Material Particulado/análise , China
16.
Environ Sci Pollut Res Int ; 30(2): 4694-4708, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35972655

RESUMO

Summertime ozone pollution has become increasingly severe over many parts of China in recent years. Due to lack of historical ozone observations, few studies have analyzed the linkage between natural climate variability and ozone levels for a long time series. This study uses the simulation datasets from CMIP6 to explore the effects of El Niño-Southern Oscillation (ENSO) on summertime (June/July/August) surface ozone concentrations in central-eastern China (CEC; 20°N-42°N, 100°E-123°E) during the period of 1950-2014. Our results show that, after excluding the emission-related trend, the detrended summertime daily mean surface ozone concentrations averaged over CEC in El Niño years (30.69 ppb) are higher than those in La Niña events (29.34 ppb). Compared to the summertime mean ozone of 1950-2014 (30.25 ppb), the maximum anomalies in CMIP6 are 2.88 ppb (9.52% higher) and - 5.52 ppb (18.25% lower) in El Niño and La Niña years, respectively. In addition, the summertime MDA8 ozone of CEC is significantly correlated with the central-eastern equatorial Pacific SST (5°N-5°S, 170°W-120°W) (R = 0.29, P-value = 0.02). Such ozone increases/declines in El Niño/La Niña years are also found in satellite observations of OMI ozone. The results show that the ENSO affects the large-scale circulations over central-eastern China, which regulate the regional atmospheric stability and meteorological conditions (including horizontal wind fields, geopotential height, vertical velocity, surface air temperature, and precipitation) to influence the efficiency of ozone photochemical formation and transport. Our study makes better estimation and attribution of future surface ozone pollution in China.


Assuntos
El Niño Oscilação Sul , Processos Fotoquímicos , Poluição Ambiental , Temperatura , China
17.
Huan Jing Ke Xue ; 44(2): 670-679, 2023 Feb 08.
Artigo em Zh | MEDLINE | ID: mdl-36775591

RESUMO

The random forest algorithm was used to separate the mass concentrations of six air pollutants (SO2, NO2, CO, PM10, PM2.5, and O3) contributed by emissions and meteorological conditions. Their variations for five types of sites including Wuhan's central urban, suburb, industrial, the third ring road traffic, and urban background sites were investigated. The results showed that the values of PM2.5/CO, PM10/CO, and NO2/CO during the lockdown period decreased by 10.8-21.7, 9.34-24.7, and 14.4-22.1 times compared with the period before the lockdown, indicating that the contributions of emissions to PM2.5, PM10, and NO2 were reduced. O3/CO increased by 50.1-61.5 times, implying that the secondary formation increased obviously. The contributions of emissions to various types of pollutants all increased after the lockdown. During the lockdown period, affected by the operation of some uninterrupted industrial processes, PM2.5 concentrations in industrial areas dropped the least (20.5%). Compared with the lockdown period, residential activities, transportation, and industrial production were basically restored after the lockdown, resulting in the alleviation of the reduction in PM2.5 emission-related concentrations. The increase in emission-related O3 concentrations could be associated with the decreased NO and PM2.5 concentrations during the lockdown period. The elevated O3 partially offset the improved air quality brought by the reduced NO2and PM2.5 concentrations. After the lockdown, ρ(O3) related with meteorology at the suburban and urban background sites increased by 16.2 µg·m-3 and 16.1 µg·m-3, respectively, which could be attributed to the increased ambient temperature and decreased relative humidity. The decrease in PM2.5 and increase in O3 concentrations caused by reduced traffic and industrial emissions at the third ring road traffic and central urban regions can provide reference for the current coordinated and precise control of PM2.5 and O3 in subregions.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Poluentes Atmosféricos/análise , Meteorologia , Dióxido de Nitrogênio , Material Particulado/análise , COVID-19/epidemiologia , Monitoramento Ambiental/métodos , Controle de Doenças Transmissíveis , Poluição do Ar/análise
18.
Huan Jing Ke Xue ; 44(12): 6452-6462, 2023 Dec 08.
Artigo em Zh | MEDLINE | ID: mdl-38098374

RESUMO

Hourly monitoring datasets of PM2.5 mass concentration and associated chemical compositions were used to investigate the variations in their mass concentrations before, during, and after the 7th Military World Games held in Wuhan. Furthermore, the source analysis was conducted through PMF combined with the backward trajectory and concentration weighted trajectory cluster analysis. The study revealed the variations in PM2.5 compositions and sources around the Wuhan Military Games period and their response to local and surrounding regional control measures. This can provide a reference for regional precise prevention and control of PM2.5. Under the influence of emission reduction measures, PM2.5 mass concentration during the control period [(31.3±12.0) µg·m-3] decreased by 14.7% compared with that before the control period, whereas the secondary components were obviously formed, in which sulfate, nitrate, and ammonium(SNA) increased by 25.6% in total. After the control period, owing to the decrease in humidity and the influence of the northwest air mass, the mass concentration of SNA decreased by 36.9%, whereas the mass concentration of mineral elements increased by 4.7 times. The source apportionment results indicated that there was no significant difference between the vehicle emissions before and after the control(P<0.05). Compared with that in the non-control period, the contributions of industrial emission and coal burning decreased by 68.1% and 43.7%, respectively, whereas the contribution of secondary inorganic aerosol increased by 89.5%. With the lack of large-scale control of vehicle emissions, the mass concentrations of NO3- and NOx increased by 6.13 µg·m-3 and 3.56 µg·m-3, respectively. The vehicle emissions peaked at 21:00 [(10.9±3.67) µg·m-3], reflecting the emissions of cargo vehicles, which were only allowed to pass at night during the control period. With the banning of ship navigation, the ship emission in the middle and lower reaches of the Yangtze River significantly decreased(48.8%). There were also high values of fugitive dust and industrial emissions near the Anhui section of the Yangtze River waterway, which reflected the dense distribution of industrial activities and road transportation along the Yangtze River. After the control period, the fugitive dust increased by 6.6 times, and the source areas were mainly distributed in Xiangyang and Jingmen.

19.
Sci Total Environ ; 854: 158871, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126707

RESUMO

China has enacted the "Clean Heating" (CH) policy in north China. The domain-specific impacts on PM2.5 constituents and sources in small cities are still lacking, which obstruct the further policy optimization. Here, we performed an intensive observation covering the heating period (HP) and pre-heating period (PHP) in winter of 2017 at urban (UR), industrial (IS), and suburban (SUR) sites in one of the "2 + 26" cities. The mean PM2.5 concentrations at UR and IS decreased by 15.2 % and 4.6 %, while increased by 9.8 % at SUR in the HP compared with the PHP, indicating the heterogeneous responses. The lowest contribution percentages of coal combustion (14.6 %) and industrial emissions (17.1 %) to PM2.5 at UR in the HP implied the CH policy played more effective role. The most increase in NO3-/SO42- ratio by 26.8 % and the highest NO3- concentration at UR in the HP were linked mainly with the thermal-NOx emitted from natural gas (NG) burning in view of NOx emission reductions from other sources. The highest concentrations of OC, SO42-, K+, and Cl-, and contribution percentages of biomass burning (20.0 %) and coal combustion (24.8 %) to PM2.5 at SUR in the HP evidenced the enhanced usage of biomass/coal. Coal banning in the HP at IS and UR led to the obvious decreases in OC, SO42-, As, and Sb. Secondary nitrate became the largest PM2.5 source at IS and UR in the HP. Coal banning, emission control on large-size enterprises and ignored control on small-size enterprises efficiently modified the concentrations and health risks of heavy metals. The lowest carcinogenic risks moved from SUR in the PHP to UR in the HP. The policies on de-NOx of NG-burning related enterprises, reduction of biomass/coal usage in suburban area, and strict regulation of small-size enterprises were urgently need to further improve the air quality.

20.
Sci Total Environ ; 858(Pt 2): 159830, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36343804

RESUMO

Regional PM2.5 transport is a crucial factor affecting air quality, and the meteorological mechanism in the atmospheric boundary layer (ABL) has not been fully understood over the receptor region in the regional transport of air pollutants. Based on the intensive vertical measurements of air pollutants and meteorology in the ABL during a transport-induced heavy air pollution event in Xiangyang, an urban site over a receptor region in central China, we investigated the meteorological mechanism in vertical PM2.5 changes in the ABL for heavy air pollution over the receptor region. Driven by northerly winds, regional PM2.5 transport was built from upstream northern China to downstream central China, where the observed ABL structures were unstable throughout the air pollution event. We assessed the ABL structures with meteorological and PM2.5 profiles at growth, maintenance, and dissipation stages, and elucidated the mechanism of regional PM2.5 transport inducing air pollution over the receptor region with the contribution of thermal and mechanical factors. The regional PM2.5 transport was concentrated in the upper ABL over the downwind receptor region with high PM2.5 concentrations at altitudes of 600-800 m, where the transported PM2.5 peaks were downwards mixed by vertical wind shear, forming the vertical PM2.5 transport from the upper ABL to near-surface in the growth stage; the weakened winds and less unstable structures in the ABL favored the sustained pollution with slight vertical PM2.5 changes in the maintenance stage, which was dominated by thermal factors with 87 % contribution; the removal of PM2.5 was triggered by increasing winds from the upper ABL, activating the dissipation of heavy PM2.5 pollution with the mechanical effect accounting for 60 % in the dissipation stage. These findings could improve our understanding of ABL's influence on air pollution over the receptor region with implications for the regional transport of air pollutants in environmental changes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Meteorologia , Material Particulado/análise , Monitoramento Ambiental , Poluição do Ar/análise , Poluentes Atmosféricos/análise , China , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA