Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 9(3): e1003366, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23555283

RESUMO

Genome rearrangements are associated with eukaryotic evolutionary processes ranging from tumorigenesis to speciation. Rearrangements are especially common following interspecific hybridization, and some of these could be expected to have strong selective value. To test this expectation we created de novo interspecific yeast hybrids between two diverged but largely syntenic Saccharomyces species, S. cerevisiae and S. uvarum, then experimentally evolved them under continuous ammonium limitation. We discovered that a characteristic interspecific genome rearrangement arose multiple times in independently evolved populations. We uncovered nine different breakpoints, all occurring in a narrow ~1-kb region of chromosome 14, and all producing an "interspecific fusion junction" within the MEP2 gene coding sequence, such that the 5' portion derives from S. cerevisiae and the 3' portion derives from S. uvarum. In most cases the rearrangements altered both chromosomes, resulting in what can be considered to be an introgression of a several-kb region of S. uvarum into an otherwise intact S. cerevisiae chromosome 14, while the homeologous S. uvarum chromosome 14 experienced an interspecific reciprocal translocation at the same breakpoint within MEP2, yielding a chimaeric chromosome; these events result in the presence in the cell of two MEP2 fusion genes having identical breakpoints. Given that MEP2 encodes for a high-affinity ammonium permease, that MEP2 fusion genes arise repeatedly under ammonium-limitation, and that three independent evolved isolates carrying MEP2 fusion genes are each more fit than their common ancestor, the novel MEP2 fusion genes are very likely adaptive under ammonium limitation. Our results suggest that, when homoploid hybrids form, the admixture of two genomes enables swift and otherwise unavailable evolutionary innovations. Furthermore, the architecture of the MEP2 rearrangement suggests a model for rapid introgression, a phenomenon seen in numerous eukaryotic phyla, that does not require repeated backcrossing to one of the parental species.


Assuntos
Evolução Biológica , Proteínas de Transporte de Cátions/genética , Cromossomos Fúngicos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Hibridização Genética , Compostos de Amônio Quaternário/metabolismo , Especificidade da Espécie
2.
Genomics ; 104(6 Pt A): 431-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25449178

RESUMO

The fitness landscape is a powerful metaphor for describing the relationship between genotype and phenotype for a population under selection. However, empirical data as to the topography of fitness landscapes are limited, owing to difficulties in measuring fitness for large numbers of genotypes under any condition. We previously reported a case of reciprocal sign epistasis (RSE), where two mutations individually increased yeast fitness in a glucose-limited environment, but reduced fitness when combined, suggesting the existence of two peaks on the fitness landscape. We sought to determine whether a ridge connected these peaks so that populations founded by one mutant could reach the peak created by the other, avoiding the low-fitness "Valley-of-Death" between them. Sequencing clones after 250 generations of further evolution provided no evidence for such a ridge, but did reveal many presumptive beneficial mutations, adding to a growing body of evidence that clonal interference pervades evolving microbial populations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Epistasia Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adaptação Biológica , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Meios de Cultura/química , Evolução Molecular Direcionada , Evolução Molecular , Dosagem de Genes , Aptidão Genética , Glucose/química , Glucose/metabolismo , Mutação , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Seleção Genética
3.
Mol Ecol ; 23(14): 3371-83, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24863904

RESUMO

A fundamental goal of evolutionary biology is to understand how ecological diversity arises and is maintained in natural populations. We have investigated the contributions of gene flow and divergent selection to the distribution of genetic variation in an ecologically differentiated population of a thermophilic cyanobacterium (Mastigocladus laminosus) found along the temperature gradient of a nitrogen-limited stream in Yellowstone National Park. For most loci sampled, gene flow appears to be sufficient to prevent substantial genetic divergence. However, one locus (rfbC) exhibited a comparatively low migration rate as well as other signatures expected for a gene experiencing spatially varying selection, including an excess of common variants, an elevated level of polymorphism and extreme genetic differentiation along the gradient. rfbC is part of an expression island involved in the production of the polysaccharide component of the protective envelope of the heterocyst, the specialized nitrogen-fixing cell of these bacteria. SNP genotyping in the vicinity of rfbC revealed a ~5-kbp region including a gene content polymorphism that is tightly associated with environmental temperature and therefore likely contains the target of selection. Two genes have been deleted both in the predominant haplotype found in the downstream region of White Creek and in strains from other Yellowstone populations of M. laminosus, which may result in the production of heterocysts with different envelope properties. This study implicates spatially varying selection in the maintenance of variation related to thermal performance at White Creek despite on-going or recent gene flow.


Assuntos
Cianobactérias/genética , Evolução Molecular , Fluxo Gênico , Genética Populacional , Seleção Genética , DNA Bacteriano , Genes Bacterianos , Genótipo , Temperatura Alta , Mutação INDEL , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
4.
PLoS One ; 8(7): e66414, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23894280

RESUMO

Knowledge of the mechanisms that lead to reproductive isolation is essential for understanding population structure and speciation. While several models have been advanced to explain post-mating reproductive isolation, experimental data supporting most are indirect. Laboratory investigations of this phenomenon are typically carried out under benign conditions, which result in low rates of genetic change unlikely to initiate reproductive isolation. Previously, we described an experimental system using the yeast Saccharomyces cerevisiae where starvation served as a proxy to any stress that decreases reproduction and/or survivorship. We showed that novel lineages with restructured genomes quickly emerged in starved populations, and that these survivors were more fit than their ancestors when re-starved. Here we show that certain yeast lineages that survive starvation have become reproductively isolated from their ancestor. We further demonstrate that reproductive isolation arises from genomic rearrangements, whose frequency in starving yeast is several orders of magnitude greater than an unstarved control. By contrast, the frequency of point mutations is less than 2-fold greater. In a particular case, we observe that a starved lineage becomes reproductively isolated as a direct result of the stress-related accumulation of a single chromosome. We recapitulate this result by demonstrating that introducing an extra copy of one or several chromosomes into naïve, i.e. unstarved, yeast significantly diminishes their fertility. This type of reproductive barrier, whether arising spontaneously or via genetic manipulation, can be removed by making a lineage euploid for the altered chromosomes. Our model provides direct genetic evidence that reproductive isolation can arise frequently in stressed populations via genome restructuring without the precondition of geographic isolation.


Assuntos
Genoma Fúngico/genética , Isolamento Reprodutivo , Leveduras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Leveduras/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA