Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cellulose (Lond) ; 29(2): 763-776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35153393

RESUMO

Chemical force microcopy, a variation of atomic force microscopy, opened the door to visualize chemical nano-properties of various materials in their natural state. The key function of this method is given by translating adhesion forces between a functionalized tip and the sample to chemical surface behavior. In force titration, these adhesion forces are studied in different pH buffers, which allows estimating the pK a value of the analyzed surface. Herein, we report the use of this method to study natural and chemically treated wood surfaces, which are of interest in sustainable material design. First, we show varying adhesion phenomena of OH- and COOH-functionalized tips on native spruce wood cells. Then, we demonstrate how peak force tapping with chemically functionalized tips can be used to estimate the pK a value of gold substrates (pK a ≈ 5.2) and different wood cell wall layers with high spatial resolution. Additionally, the swelling behavior of wood samples is analyzed in varying pH buffers. With the applied method, chemical surface properties of complex natural substrates can be analyzed.

2.
Cellulose (Lond) ; 28(15): 9525-9545, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720466

RESUMO

Future biorefineries are facing the challenge to separate and depolymerize biopolymers into their building blocks for the production of biofuels and basic molecules as chemical stock. Fungi have evolved lignocellulolytic enzymes to perform this task specifically and efficiently, but a detailed understanding of their heterogeneous reactions is a prerequisite for the optimization of large-scale enzymatic biomass degradation. Here, we investigate the binding of cellulolytic enzymes onto biopolymers by surface plasmon resonance (SPR) spectroscopy for the fast and precise characterization of enzyme adsorption processes. Using different sensor architectures, SPR probes modified with regenerated cellulose as well as with lignin films were prepared by spin-coating techniques. The modified SPR probes were analyzed by atomic force microscopy and static contact angle measurements to determine physical and surface molecular properties. SPR spectroscopy was used to study the activity and affinity of Trichoderma reesei cellobiohydrolase I (CBHI) glycoforms on the modified SPR probes. N-glycan removal led to no significant change in activity or cellulose binding, while a slightly higher tendency for non-productive binding to SPR probes modified with different lignin fractions was observed. The results suggest that the main role of the N-glycosylation in CBHI is not to prevent non-productive binding to lignin, but probably to increase its stability against proteolytic degradation. The work also demonstrates the suitability of SPR-based techniques for the characterization of the binding of lignocellulolytic enzymes to biomass-derived polymers. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10570-021-04002-6.

3.
Biomacromolecules ; 21(10): 4244-4252, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-32852940

RESUMO

Peak force infrared (PFIR) microscopy is a recently developed approach to acquire multiple chemical and physical material properties simultaneously and with nanometer resolution: topographical features, infrared (IR)-sensitive maps, adhesion, stiffness, and locally resolved IR spectra. This multifunctional mapping is enabled by the ability of an atomic force microscope tip in the peak force tapping mode to detect photothermal expansion of the sample. We report the use of the PFIR to characterize the chemical modification of bio-based native and intact wooden matrices, which has evolved into an increasingly active research field. The distribution of functional groups of wood cellulose aggregates, either in native or carboxylated states, was detected with a remarkable spatial resolution of 16 nm. Furthermore, mechanical and chemical maps of the distinct cell wall layers were obtained on polymerized wooden matrices to localize the exact position of the modified regions. These findings shall support the development and understanding of functionalized wood materials.


Assuntos
Parede Celular , Madeira , Celulose , Microscopia de Força Atômica
4.
Biomacromolecules ; 19(3): 973-979, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29414240

RESUMO

Nanocellulose-based self-standing films are becoming a substrate for flexible electronics, diagnostics, and sensors. Strength and surface chemistry are vital variables for these film-based endeavors, the former is one of the assets of nanocellulose. To contribute to the latter, nanocellulose films are tuned with a side-specific functionalization, having an aldehyde and a carboxyl side. The functionalities were obtained combining premodification of the film components by periodate oxidation with ozone post-treatment. Periodate oxidation of cellulose nanocrystals results in film components that interact through intra- and intermolecular hemiacetals and lead to films with an elastic modulus of 11 GPa. The ozone treatment of one film side induces conversion of the aldehyde into carboxyl functionalities. The ozone treatment on individual crystals was largely destructive. Remarkably, such degradation is not observed for the self-standing film, and the film strength at break is preserved. Preserving a physically intact film despite ozone treatment is a credit to using the dry film structure held together by interparticle covalent linkages. Additionally, gas-phase post-treatment avoids disintegration that could result from immersion into solvents. The crystalline cellulose "Janus" film is suggested as an interfacial component in biomaterial engineering, separation technology, or in layered composite materials for tunable affinity between the layers.


Assuntos
Celulose/química , Membranas Artificiais , Nanopartículas/química , Ozônio/química , Aldeídos/química , Oxirredução
5.
Cellulose (Lond) ; 25(9): 5297-5307, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174375

RESUMO

ABSTRACT: Surface chemistry of regenerated all-wood-biopolymer fibers that are fine-tuned by composition of cellulose, lignin and xylan is elucidated via revealing their surface energy and adhesion. Xylan additive resulted in thin fibers and decreased surface energy of the fiber outer surfaces compared to the cellulose fibers, or when lignin was used as an additive. Lignin increased the water contact angle on the fiber surface and decreased adhesion force between the fiber cross section and a hydrophilic probe, confirming that lignin reduced fiber surface affinity to water. Lignin and xylan enabled fiber decoration with charged groups that could tune the adhesion force between the fiber and an AFM probe. The fibers swelled in water: the neat cellulose fiber cross section area increased 9.2%, the fibers with lignin as the main additive 9.1%, with xylan 6.8%, and the 3-component fibers 5.5%. This indicates that dimensional stability in elevated humidity is improved in the case of 3-component fiber compared to 2-component fibers. Xylan or lignin as an additive neither improved strength nor elongation at break. However, improved deformability was achieved when all the three components were incorporated into the fibers.

6.
Adv Healthc Mater ; 13(8): e2302968, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38079208

RESUMO

Peripheral nerve reconstruction through the employment of nerve guidance conduits with Trichonephila dragline silk as a luminal filling has emerged as an outstanding preclinical alternative to avoid nerve autografts. Yet, it remains unknown whether the outcome is similar for silk fibers harvested from other spider species. This study compares the regenerative potential of dragline silk from two orb-weaving spiders, Trichonephila inaurata and Nuctenea umbratica, as well as the silk of the jumping spider Phidippus regius. Proliferation, migration, and transcriptomic state of Schwann cells seeded on these silks are investigated. In addition, fiber morphology, primary protein structure, and mechanical properties are studied. The results demonstrate that the increased velocity of Schwann cells on Phidippus regius fibers can be primarily attributed to the interplay between the silk's primary protein structure and its mechanical properties. Furthermore, the capacity of silk fibers to trigger cells toward a gene expression profile of a myelinating Schwann cell phenotype is shown. The findings for the first time allow an in-depth comparison of the specific cellular response to various native spider silks and a correlation with the fibers' material properties. This knowledge is essential to open up possibilities for targeted manufacturing of synthetic nervous tissue replacement.


Assuntos
Tecido Nervoso , Aranhas , Animais , Regeneração Nervosa/fisiologia , Células de Schwann , Seda/química
7.
Int J Adhes Adhes ; 40(1): 129-134, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27570321

RESUMO

Spruce wood specimens were bonded with one-component polyurethane (PUR) and urea-formaldehyde (UF) adhesive, respectively. The adhesion of the adhesives to the wood cell wall was evaluated at two different locations by means of a new micromechanical assay based on nanoindentation. One location tested corresponded to the interface between the adhesive and the natural inner cell wall surface of the secondary cell wall layer 3 (S3), whereas the second location corresponded to the interface between the adhesive and the freshly cut secondary cell wall layer 2 (S2). Overall, a trend towards reduced cell wall adhesion was found for PUR compared to UF. Position-resolved examination revealed excellent adhesion of UF to freshly cut cell walls (S2) but significantly diminished adhesion to the inner cell wall surface (S3). In contrast, PUR showed better adhesion to the inner cell wall surface and less adhesion to freshly cut cell walls. Atomic force microscopy revealed a less polar character for the inner cell wall surface (S3) compared to freshly cut cell walls (S2). It is proposed that differences in the polarity of the used adhesives and the surface chemistry of the two cell wall surfaces examined account for the observed trends.

8.
Polymers (Basel) ; 14(20)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36297929

RESUMO

Proteins obtained as side-products from starch production (potato and corn proteins) were investigated for wood adhesives application. To improve the wet strength of protein-based adhesives, glyoxal was added as a crosslinking agent. The effect of glyoxal on the wet strength of protein-based adhesives was investigated at different pH, protein: glyoxal ratios and solid content. The alkaline pretreatment of proteins was carried out by two different methods which reduced the molecular weight of proteins to different extents. The effect of molecular weight reduction on the wet strength of protein-glyoxal adhesives was also observed. It was found that pH level affects wet strength more significantly compared to solid content and protein-to-crosslinker ratio. Potato and corn proteins crosslinked with glyoxal showed maximal wet strength results in an acidic pH range.

9.
Materials (Basel) ; 15(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500198

RESUMO

The study evaluates the performance of laboratory, single-layered particleboards made out of fructose-hydroxymethylfurfural-bishexamethylenetriamine (SusB) adhesive as a sustainable alternative. Several production parameters such as mat moisture content (MMC), adhesive amount and press time were varied and their effect on the bonding efficiency investigated. The internal bond strength (IB) and thickness swelling after 24 h of water immersion (TS) were taken as evaluation criteria for the bonding efficiency. pMDI-bonded particleboards were produced as fossil-based, formaldehyde-free reference. Particleboard testing was complemented by tensile shear strength measurements and thermal analysis. It was found that the MMC has the highest impact on the internal bond strength of SusB-bonded particleboards. In the presence of water, the reaction enthalpy of the main curing reaction (occurring at 117.7 °C) drops from 371.9 J/mol to 270.5 J/mol, leading to side reactions. By reducing the MMC from 8.7%, the IB increases to 0.61 N/mm2, thus surpassing P2 requirements of the European standard EN312. At a press factor of 10 s/mm, SusB-bonded particleboards have a similar IB strength as pMDI-bonded ones, with 0.59 ± 0.12 N/mm2 compared to 0.59 ± 0.09 N/mm2. Further research on the improvement of the dimensional stabilization of SusB-bonded PBs is needed, as the TS ranges from 30-40%.

10.
Data Brief ; 39: 107465, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34703856

RESUMO

The work consists of primary and analysed data from rheological measurements of carbohydrate-hydroxymethylfurfural-amine adhesives. The studied adhesives are a bio-based alternative to conventional wood adhesives. The rheological properties were studied at different temperatures in isothermal (80, 90, 95 °C) and non-isothermal (20-120 °C) oscillatory measurements. Non-isothermal rheological measurements were used for the determination of the activation energy based on Vyazovskin's isoconversional method. The viscosity profile of the adhesives, determined from isothermal measurements, was fitted by an empirical model. The viscosity kinetic constant can be obtained from this empirical model and used in further rheokinetic analysis. Data from density and swelling experiments was measured for the characterization of the adhesive network. The determined polymer-solvent interaction parameter is included in the collected data. The provided datasets were used in the investigation of the reactivity and curing reaction of the studied adhesives. A discussion and interpretation of the data can be found in the previous publication [1].

11.
ACS Omega ; 6(25): 16641-16648, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34235336

RESUMO

Carbohydrates and hexose-derived 5-hydroxymethylfurfural (5-HMF) are platform chemicals for the synthesis of sustainable binders. New, greener approaches aim at the development of production systems, which minimize process steps and avoid organic solvents or other auxiliaries that could interfere with subsequent resin synthesis. In our work, carbohydrate solutions rich in 5-hydroxymethylfurfural (5-HMF) were produced using a continuous-flow microreactor and diluted H2SO4 as the catalyst. After optimization of the process conditions (temperature, reaction time, catalyst content), a 5-HMF yield of 49% was obtained at a low reaction time of 0.6 min and a catalyst concentration of 1% at 175 °C and 17 bar pressure. Extensive rehydration of the product was avoided by efficient immediate cooling of the reaction solution. The stability of the reaction system was improved by increasing the inner diameter of the capillary in the flow reactor to 2 mm. Advantageously, the obtained reaction mixtures are used directly as precursors in the development of sustainable binder systems, without the need of additional purification, filtration, or extraction steps.

12.
J Exp Bot ; 61(2): 587-95, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20007198

RESUMO

The functional characteristics of plant cell walls depend on the composition of the cell wall polymers, as well as on their highly ordered architecture at scales from a few nanometres to several microns. Raman spectra of wood acquired with linear polarized laser light include information about polymer composition as well as the alignment of cellulose microfibrils with respect to the fibre axis (microfibril angle). By changing the laser polarization direction in 3 degrees steps, the dependency between cellulose and laser orientation direction was investigated. Orientation-dependent changes of band height ratios and spectra were described by quadratic linear regression and partial least square regressions, respectively. Using the models and regressions with high coefficients of determination (R(2) > 0.99) microfibril orientation was predicted in the S1 and S2 layers distinguished by the Raman imaging approach in cross-sections of spruce normal, opposite, and compression wood. The determined microfibril angle (MFA) in the different S2 layers ranged from 0 degrees to 49.9 degrees and was in coincidence with X-ray diffraction determination. With the prerequisite of geometric sample and laser alignment, exact MFA prediction can complete the picture of the chemical cell wall design gained by the Raman imaging approach at the micron level in all plant tissues.


Assuntos
Celulose/química , Microfibrilas/química , Picea/química , Parede Celular/química , Análise Espectral Raman
13.
Biomacromolecules ; 11(5): 1281-5, 2010 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-20353195

RESUMO

The converse piezoelectric effect in cellulose I was studied by exposing thin pine wood slices to an electric field. Macroscopically, a strong extension of wood was observed in its transverse anatomical direction (grain angle 90 degrees), perpendicular to the direction of the electric field. The same effect, albeit to a lesser extent, was observed for specimens with a 45 degree grain angle, whereas no measurable dimensional change was observed for specimens with grain oriented parallel to the testing direction (0 degree grain angle). The measured extension in the transverse direction was proportional to the intensity of the applied electric field and amounted to 0.0278% on average at a field intensity of 1 MV m(-1), which results in a piezoelectric charge constant of 278 pm V(-1). At the nanoscale, changes in the cellulose crystallites due to the applied electric field were studied by means of wide-angle X-ray diffraction using the same specimens as in macroscopic experiments. Significant radial shifts of the scattering intensity peak attributed to the cellulose 200 crystallographic plane toward smaller scattering angles were observed, while the electric field was applied. These peak shifts were attributed to an increase in the spacing of the 200 crystallographic planes of cellulose I. At an electric field intensity of 1 MV m(-1), a crystallite strain epsilon(perpendicular 200) normal to the 200 reflection plane of 0.2% was estimated from Bragg's law.


Assuntos
Celulose/química , Difração de Raios X/métodos , Madeira
14.
Trees (Berl West) ; 24(5): 931-940, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22064842

RESUMO

Acoustic emission (AE) and radial shrinkage were compared between fully saturated fresh and pre-dried Norway spruce sapwood during dehydration at ambient temperature. Hydraulic conductivity measurements, anatomical investigations on bordered pits and X-ray computed tomography (CT) scans were done to search for possible AE sources other than the breakage of the water columns inside the tracheids. Both fresh and pre-dried specimens showed radial shrinkage due to drying surface layers right from the beginning of dehydration, which induced almost no AE. Whereas no dimensional changes occurred in pre-dried wood thereafter, fresh wood showed a rapid shrinkage increase starting at 25% relative water loss. This dimensional change ceased when further moisture got lost and was even partially reversed. AE of fresh wood showed much higher activity and energy, which is a waveform feature that describes the strength of the acoustic signal. Extremely high single AE energy events were detected at this critical stage of dehydration. After partial recovery from shrinkage, neither dimensional changes nor AE activity showed differences between fresh and pre-dried wood after more than 80% relative moisture loss. Our results suggested that fresh sapwood is more prone to dehydration stresses than pre-dried sapwood. Differences in AE and shrinkage behavior might be due to the weakening or distortion of the pit membranes (cavitation fatigue), pit aspiration, structural changes of the cell walls and micro-checks, which occurred during the first dehydration cycle.

15.
Adv Mater ; 32(48): e2004519, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33079407

RESUMO

Many organisms encapsulate their embryos in hard, protective shells. While birds and reptiles largely rely on mineralized shells, plants often develop highly robust lignocellulosic shells. Despite the abundance of hard plant shells, particularly nutshells, it remains unclear which fundamental properties drive their mechanical stability. This multiscale analysis of six prominent (nut)shells (pine, pistachio, walnut, pecan, hazelnut, and macadamia) reveals geometric and structural strengthening mechanisms on the cellular and macroscopic length scales. The strongest tissues, found in walnut and pistachio, exploit the topological interlocking of 3D-puzzle cells and thereby outperform the fiber-reinforced structure of macadamia under tensile and compressive loading. On the macroscopic scale, strengthening occurs via an increased shell thickness, spherical shape, small size, and a lack of extended sutures. These functional interrelations suggest that simple geometric modifications are a powerful and resource-efficient strategy for plants to enhance the fracture resistance of entire shells and their tissues. Understanding the interplay between structure, geometry, and mechanics in hard plant shells provides new perspectives on the evolutionary diversification of hard seed coats, as well as insights for nutshell-based material applications.


Assuntos
Fenômenos Mecânicos , Plantas/anatomia & histologia , Fenômenos Biomecânicos
16.
ChemSusChem ; 13(20): 5408-5422, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32755049

RESUMO

5-Hydroxymethylfurfural (HMF) is a promising bio-derived platform chemical with a broad scope of application, for example, in the production of solvents, fuels, polymers, or adhesives. The wood and foundry industries are among the largest adhesive users and currently both rely to a large extent on the use of fossil-based binders, such as by using formaldehyde as a crosslinker in many commercial adhesive systems. The industry is thus looking for suitable alternatives to replace fossil-based chemicals. HMF and its derivatives are considered to be key renewable reactants in adhesive systems. The core of this Review is the critical evaluation of the potential of HMF and its derivatives in adhesive systems. The technological performance was assessed in the fields of wood-based materials, sand casting and composites. As an overall conclusion, HMF and its derivatives have a high application potential in alternative adhesives. Clearly, further research is needed to improve the performance and produce economically competitive adhesives.


Assuntos
Adesivos/química , Furaldeído/análogos & derivados , Reagentes de Ligações Cruzadas , Formaldeído/química , Furaldeído/química , Vidro/química , Hidrólise , Indústrias , Areia/química , Solventes/química , Sacarose/química , Taninos/química , Triazinas/química , Madeira/química
17.
Int J Biol Macromol ; 165(Pt B): 2520-2527, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33736273

RESUMO

Tuning the composition of regenerated lignocellulosic fibers in the production process enables targeting of specific material properties. In composite materials, such properties could be manipulated by controlled heterogeneous distribution of chemical components of regenerated fibers. This attribute requires a visualization method to show their inherent chemical characteristics. We compared complementary microscopic techniques to analyze the surface chemistry of four differently tuned regenerated lignocellulosic fibers. Adhesion properties were visualized with chemical force microscopy and showed contrasts towards hydrophilic and hydrophobic atomic force microscopy tips. Fibers containing xylan showed heterogeneous adhesion properties within the fiber structure towards hydrophilic tips. Additionally, peak force infrared microscopy mapped spectroscopic contrasts with nanometer resolution and provided point infrared spectra, which were consistent to classical infrared microscopy data. With this setup, infrared signals with a spatial resolution below 20 nm reveal chemical gradients in specific fiber types.


Assuntos
Lignina/química , Xilanos/química , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia de Varredura por Sonda , Propriedades de Superfície
18.
ChemSusChem ; 13(14): 3544-3564, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32302054

RESUMO

Hydroxymethylfurfural (HMF) is a high-value platform chemical derived from renewable resources. In recent years, considerable efforts have been made to produce HMF also at industrial scale, which still faces some challenges regarding yield as well as sustainable and economic process designs. This critical Review evaluates the industrial process development of sustainable biomass conversion to HMF. Qualitative and quantitative guidelines are defined for the technological assessment of the processes described in patent literature. The formation of side products, difficulties in the separation and purification of HMF as well as catalyst regeneration were identified as major challenges in the HMF production. A first small-scale, commercial HMF production plant with a capacity of 300 tHMF per year has been operating in Switzerland since 2014.

19.
Mater Sci Eng C Mater Biol Appl ; 110: 110619, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204063

RESUMO

Bacterial cellulose (BC) hydrogels are among the most efficient materials already being used for the treatment of complex wounds. The moist environment provided by the BC dressing is a key feature assuring efficient wound recovery. Improving the dressings´ moisture-holding ability facilitates its application and leads to an economically preferable extended wear time. To produce materials with reduced moisture loss, BC dressings were impregnated with a secondary hydrophilic component: alginate. The feasibility of an industrial fabrication of this composite was evaluated on pilot scale equipment. It was shown that the procedure can easily be scaled up without significantly increasing the manufacturing time. The resultant composite possessed improved water-retention properties, providing a smooth dressing exchange as demonstrated by a wound-imitating model. The new materials were moreover shown to be compatible with an antimicrobially active compound, which assures their efficiency in the treatment of highly colonized wounds.


Assuntos
Alginatos/química , Antibacterianos/química , Bactérias/química , Bandagens , Celulose/química , Linhagem Celular Transformada , Humanos , Teste de Materiais
20.
ACS Appl Bio Mater ; 3(2): 1197-1209, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019320

RESUMO

Three-dimensional scaffolds (3D) with controlled shape, dual porosity and long-term mechanical and dimensional stability in biofluids are of interest as biotemplates in tissue engineering. Herein, self-standing and lightweight cellulose-based biogenic scaffolds with a spatially structured morphology, macropores and interconnected micropores were fabricated using a combination of direct ink writing 3D printing and freeze-drying techniques. This was achieved by developing a water-based and low-cost bicomponent ink based on commercially available nanofibrillated cellulose (NFC) and carboxymethyl cellulose (CMC). Physical cross-linking through dehydrothermal treatment significantly increased the surface hardness, indentation modulus, compression strength, as well as the dimensional stability of the scaffolds in biofluids, in comparison to untreated materials. However, no differences in the spectra of solid state nuclear magnetic resonance or infrared were observed for dehydrothermal treated samples, suggesting that the increase of mechanical properties and dimensional stability is based on the physical cross-linking of functional groups both at the interface between NFC and CMC. The supramolecular structure of the polymers was well-preserved as disclosed by X-ray diffraction measurements. The cross-linked scaffolds showed high proliferation, viability, and attachment of human bone tissue derived osteoblast cells (hFOB). The simple and straightforward avenue proposed here for the design of cellulose-based fibrous inks and dual porous scaffolds from the commercially available materials and without the need of any additional cross-linkers should pave the way for the development of implantable, degradable scaffolds and cell-laden biomaterials for bone tissue regeneration and 3D bioprinting applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA